本文主要是介绍H264之NALU结构详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
摘要:本文详细描述了AVC的NALU的码流结构,以及各个层面上NALU详细的构成。
关键字:AVC,NALU
1 NALU简介
NAL层即网络抽象层(Network Abstraction Layer),是为了方便在网络上传输的一种抽象层。一般网络上传输的数据包有大小限制,而AVC的帧大小远远大于网络传输的字节大小限制。因此要对AVC的数据流进行拆包,将一帧数据拆分为多个包传输。和NAL层相对是VAL层,即视频编码层(Video Coding Layer)
NALU就是经过分组后的一个一个数据包。每个NALU由一个1字节的NALU头部和一个包含控制信息或编码视频数据的字节流组成。NALU头部包含了NALU的类型以及其重要性的信息。NALU的类型指示了NALU的用途或功能,可以用于识别不同类型的单元,例如参数集和用于参考的片段。用于参考的参数集和片段被认为是重要或高优先级的,因为它们的丢失可能会导致难以解码后续的编码片段。非参考片段被认为对解码器的影响较小,因为它们的丢失不会影响进一步的解码。这些信息可以选择性地用于在传输过程中对某些NALU进行优先级排序。
每个NALU中的VCL数据即编码序列以一个或多个即时解码器刷新(IDR)访问单元开始,其中包含一个或多个IDR片段,每个IDR片段都是一个帧内编码的片段。接下来是默认的片段类型,即非IDR编码的片段,以及/或者数据分割片段。数据分割片段将编码视频数据的不同组件分别放在单独的NAL单元中,这在存在传输错误的情况下可能很有用。非VCL NAL单元包括参数集、补充增强信息参数,这些参数对解码和显示视频数据可能有用,但对于正确解码来说并非必需,以及定义编码部分之间边界的分隔符。
2 NALU码流结构
一个完整的数据包包含多个NALU,不同的NALU该如何组织规范中并没有规定,因此实际实现比较广泛的有两种格式AnnexB和AVCC。
2.1 AnnexB
AnnexB是一种比较常见的H264码流格式,FFmpeg解封装的H264码流就是这种格式。AnnexB的格式比较简单每个NALU单元之前通过分隔符0x00 00 00 01或者0x00 00 01区分不同的NALU单元。对于非VCL和VCL的单元是不区分的都是存储在NALU的Body中。
由于NALU的Body中的数据是压缩数据可能出现start code,因此规定RBSP中的0x000000、0x000001、0x000002和0x000003是非法的。如果数据中包含类似的二进制序列需要插入一个“模拟预防”字节0x03来实现,使得0x000001变成0x00000301,解码时去除即可。
VCL包含经过编码的数据,而非VCL包含一些元数据协助解码。
2.2 AVCC
另一种常见的存储H.264流的方法是AVCC格式。在这种格式中,每个NALU之前都有它的长度(以大端格式表示)。这种方法更容易解析,但会失去附录B的字节对齐特性。长度可以使用1、2或4个不同的字节进行编码增加复杂性。该值存储在一个头部对象中,通常被称为“extradata”或“sequence header”。它的基本格式如下:
bits
8 version ( always 0x01 )
8 avc profile ( sps[0][1] )
8 avc compatibility ( sps[0][2] )
8 avc level ( sps[0][3] )
6 reserved ( all bits on )
2 NALULengthSizeMinusOne
3 reserved ( all bits on )
5 number of SPS NALUs (usually 1)repeated once per SPS:16 SPS sizevariable SPS NALU data8 number of PPS NALUs (usually 1)repeated once per PPS:16 PPS sizevariable PPS NALU data
2.3 AVCC和AnnexB优点对比
两种不同格式的优点:
附录B(Annex B)格式:
- 字节对齐特性:Annex B格式使用起始码(start code)作为NALU的分隔符,这使得解析和处理数据包相对容易,因为起始码可以用于准确定位NALU的边界。
- 广泛支持:Annex B格式是H.264视频流的一种常见格式,得到了广泛的支持,并且在许多常见的容器格式(如MP4)中使用。
- 适合网络流。
AVCC格式: - 简化解析:AVCC格式在每个NALU之前包含了长度信息,这使得解析和处理数据包更加简单,因为可以直接根据长度信息来定位和提取NALU。
- 灵活性:AVCC格式允许使用不同字节长度来编码NALU的长度,从而提供了更大的灵活性,可以适应不同大小的NALU。
- 适合本地文件。
2.3 NALU
一个完整的NALU由NALU Header和RBSP(Raw Byte Sequence Payloads)组成。
NALU Header占位8Bit,其中三个字段分别为
- Forbidden_bit(1bit,一定是0);
- NAL_Reference_bit(2bit,优先级),如 00 的 NALU 解码器可以丢弃它而不影响图像的回放。0~3,取值越大,表示当前NALU越重要,需要优先受到保护。如果当前NALU是属于参考帧的片,或是序列参数集,或是图像参数集这些重要的单位时,本句法元素必需大于0;
- NAL_UNIT_TYPE(5bit),标识了当前Unit的类型和优先级信息。
下面是Unit的类型标识和具体对应的类型描述(一般码流的前两个NALU分别是SPS和PPS):
0 Unspecified non-VCL
1 Coded slice of a non-IDR picture VCL
2 Coded slice data partition A VCL
3 Coded slice data partition B VCL
4 Coded slice data partition C VCL
5 Coded slice of an IDR picture VCL
6 Supplemental enhancement information (SEI) non-VCL
7 Sequence parameter set non-VCL
8 Picture parameter set non-VCL
9 Access unit delimiter non-VCL
10 End of sequence non-VCL
11 End of stream non-VCL
12 Filler data non-VCL
13 Sequence parameter set extension non-VCL
14 Prefix NAL unit non-VCL
15 Subset sequence parameter set non-VCL
16 Depth parameter set non-VCL
17..18 Reserved non-VCL
19 Coded slice of an auxiliary coded picture without partitioning non-VCL
20 Coded slice extension non-VCL
21 Coded slice extension for depth view components non-VCL
22..23 Reserved non-VCL
24..31 Unspecified non-VCL
- SPS: 序列参数集,包含解码配置,比如profile level 分辨率和帧率等。
- PPS:图像参数集,包含有关熵编码模式、分片组、运动预测和去块滤波器等信息。
- IDR: 立即解码刷新单元,这种NALU包含一个完整的图像序列,不依赖其他NALU就可以独立解码和显示,即一种特殊的I帧。
2.3.1 Slice
一个视频图像可编码成一个或更多个切片,每个切片包含整数个宏块(MB),即每个切片至少一个 MB,最多时每个切片包含整个图像的宏块。总之,一幅图像中每个切片的宏块数不一定固定。设切片的目的是为了限制误码的扩散和传输,应使编码切片相互间是独立的。某个切片的预测不能以其它切片中的宏块为参考图像,这样某一切片中的预测误差才不会传播到其它切片中去。
切片由切片头和切片数据组成。切片头(slice header)传递了适用于切片中所有宏块(macroblock)的共同信息,例如切片类型(slice type),切片类型确定了允许使用哪些宏块类型,切片对应的帧编号,参考图像设置以及默认量化参数(QP)。切片头包含了以下信息:
- 切片类型:切片类型确定了切片中可以使用的宏块类型,例如I帧、P帧或B帧。
- 帧编号:切片头指示了切片所对应的帧的编号,用于正确解码和顺序播放视频帧。
- 参考图像设置:切片头包含了参考图像的相关设置,用于解码过程中的运动估计和补偿。
- 默认量化参数(QP):切片头中包含了默认的量化参数,用于控制视频质量和压缩率。
切片头中的这些信息对于解码器正确解码视频数据非常重要。通过切片头,解码器可以了解切片中宏块的类型、参考图像的设置以及量化参数的默认值,从而进行正确的解码和重建视频帧。切片头在H.264(或AVC)视频编码中起着关键的作用,它提供了切片中宏块的共同信息,确保视频数据能够被正确解码和播放。
切片数据部分由一系列组成切片的宏块(macroblock)组成。在许多编码序列中,包含没有数据的宏块,即跳过宏块(skip macroblock),是非常常见的情况。跳过宏块通过参数"mb skip run"来表示,它表示一系列跳过的宏块的数量,在CAVLC熵编码模式下使用;或者通过"mb skip flag"来表示,它表示单个跳过的宏块,在CABAC熵编码模式下使用。跳过宏块是指在编码过程中,某些宏块不包含有效的数据,可以被跳过以提高编码效率。在切片数据部分中,这些跳过宏块的存在是很常见的。在CAVLC熵编码模式下,通过"mb skip run"参数来表示一连串跳过的宏块的数量。而在CABAC熵编码模式下,通过"mb skip flag"参数来表示单个跳过的宏块。这些跳过宏块的存在可以减少编码数据量,提高压缩效率。在解码过程中,解码器会根据相应的参数来识别和处理跳过宏块,以正确恢复视频帧的内容。切片数据部分中的这些跳过宏块对于视频编码和解码过程至关重要,它们在提高编码效率和压缩率方面发挥着重要作用。
2.3.2 宏块
宏块层包含了解码单个宏块所需的所有语法元素。在H.264(或AVC)中,宏块是视频编码的基本单元,表示视频帧内的一个矩形像素块。宏块层包含了解码和重建宏块所需的所有信息和语法元素。宏块层中的语法元素包括:
- 宏块类型:指定宏块的类型,如帧内(I帧)、预测(P帧)或双向预测(B帧),表示用于编码宏块的预测模式。
- 运动矢量:指定宏块相对于前一帧中参考位置的位移,描述宏块的运动信息。
- 变换系数:表示经过离散余弦变换(DCT)和量化后的宏块变换系数。
- 预测模式:指示用于编码宏块的预测模式,如帧内预测或帧间预测。
- 残差数据:包含预测和量化后的残差信息,用于在解码过程中重建宏块。
通过解码宏块层中的语法元素,解码器可以重建宏块,并为整个视频帧的重建做出贡献。宏块层在解码过程中起着关键作用,因为它包含了解码和重建单个宏块所需的所有必要信息。
3 参考文献
- H.264媒体流AnnexB和AVCC格式分析 及 FFmpeg解析mp4的H.264码流方法
- Possible Locations for Sequence/Picture Parameter Set(s) for H.264 Stream
- what the advantage of h264 Annex-B VS AVCC
- H264解析
- H264: From NAL to RTP
这篇关于H264之NALU结构详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!