Child Mind Institute - Detect Sleep States(2023年第一次Kaggle拿到了银牌总结)

本文主要是介绍Child Mind Institute - Detect Sleep States(2023年第一次Kaggle拿到了银牌总结),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

感谢

感谢艾兄(大佬带队)、rich师弟(师弟通过这次比赛机械转码成功、耐心学习)、张同学(也很有耐心的在学习),感谢开源方案(开源就是银牌),在此基础上一个月不到收获到了很多,运气很好。这个是我们比赛的总结: 

我们队Kaggle CMI银牌方案,欢迎感兴趣的伙伴upvote:https://www.kaggle.com/competitions/child-mind-institute-detect-sleep-states/discussion/459610


计划 (系统>结果,稳健>取巧)

团队计划表,每个人做的那部分工作,避免重复,方便交流,提高效率,这个工作表起了很大的作用。


具体方案 

75th Place Detailed Solution - Spec2DCNN + CenterNet + Transformer + NMS

First of all, I would like to thank @tubotubo for sharing your high-quality code, and also thank my teammates @liruiqi577 @brickcoder @xtzhou for their contributions in the competition. Here, I am going to share our team’s “snore like thunder” solution from the following aspects:

  1. Data preprocessing
  2. Feature Engineering
  3. Model
  4. Post Processing
  5. Model Ensemble

1. Data preprocessing

We made EDA and readed open discussions found that there are 4 types of data anomalies:

  • Some series have a high missing rate and some of them do not even have any event labels;
  • In some series , there are no event annotations in the middle and tail (possibly because the collection activity has stopped);
  • The sleep record is incomplete (a period of sleep is only marked with onset or wakeup).
  • There are outliers in the enmo value.

To this end, we have some attempts, such as:

  • Eliminate series with high missing rates;
  • Cut the tail of the series without event labels;
  • Upper clip enmo to 1.

But the above methods didn't completely work. In the end, our preprocessing method was:

We split the dataset group by series into 5 folds. For each fold, we eliminate series with a label missing rate of 100% in the training dataset while without performing any data preprocessing on the validation set. This is done to avoid introducing noise to the training set, and to ensure that the evaluation results of the validation set are more biased towards the real data distribution, which improve our LB score + 0.006.

Part of our experiments as below:

ExperimentFold0Public (single fold)Private (5-fold)
No preprocess missing data0.7510.7180.744
Eliminate unlabeled data at the end of train_series & series with missing rate >80%0.7390.7090.741
Drop train series which don’t have any event labels0.7520.7240.749

2. Feature Engineering

  • Sensor features: After smoothing the enmo and anglez features, a first-order difference is made to obtain the absolute value. Then replace the original enmo and anglez features with these features, which improve our LB score + 0.01.
train_series['enmo_abs_diff'] = train_series['enmo'].diff().abs()
train_series['enmo'] = train_series['enmo_abs_diff'].rolling(window=5, center=True, min_periods=1).mean()
train_series['anglez_abs_diff'] = train_series['anglez'].diff().abs()
train_series['anglez'] = train_series['anglez_abs_diff'].rolling(window=5, center=True, min_periods=1).mean()
  • Time features: sin and cos hour.

In addition, we also made the following features based on open notebooks and our EDA, such as: differential features with different orders, rolling window statistical features, interactive features of enmo and anglez (such as anglez's differential abs * enmo, etc.), anglez_rad_sin/cos, dayofweek/is_weekend (I find that children have different sleeping habits on weekdays and weekends). But strangely enough, too much feature engineering didn’t bring us much benefit.

ExperimentFold0Public (5-fold)Private (5-fold)
anglez + enmo + hour_sin + hour_cos0.7630.7310.768
anglez_abs_diff + enmo_abs_diff + hour_sin + hour_cos0.7710.7410.781

3. Model

We used 4 models:

  • CNNSpectrogram + Spec2DCNN + UNet1DDecoder;
  • PANNsFeatureExtractor + Spec2DCNN + UNet1DDecoder.
  • PANNsFeatureExtractor + CenterNet + UNet1DDecoder.
  • TransformerAutoModel (xsmall, downsample_rate=8).

Parameter Tunning: Add more kernel_size 8 for CNNSpectrogram can gain +0.002 online.

Multi-Task Learning Objectives: sleep status, onset, wake.

Loss Function: For Spec2DCNN and TransformerAutoModel, we use BCE, but with multi-task target weighting, sleep:onset:wake = 0.5:1:1. The purpose of this is to allow the model to focus on learning the last two columns. We tried to train only for the onset and wake columns, but the score was not good. The reason is speculated that the positive samples in these two columns are sparse, and MTL needs to be used to transfer the information from positive samples in the sleep status to the prediction of sleep activity events. Also, I tried KL Loss but it didn't work that well.

self.loss_fn = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([0.5,1.,1.]))

At the same time, we adjusted epoch to 70 and added early stopping with patience=15. The early stopping criterion is the AP of the validation dataset, not the loss of the validation set. batch_size=32.

ExperimentFold0Public (single fold)Private (5-fold)
earlystop by val_loss0.7500.6970.742
earlystop by val_score0.7510.7180.744
loss_wgt = 1:1:10.7520.7240.749
loss_wgt = 0.5:1:10.7550.7230.753

Note: we used the model_weight.pth with the best offline val_score to submit our LB instead of using the best_model.pth with the best offline val_loss。

4. Post Processing

Our post-processing mainly includes:

  • find_peaks(): scipy.signal.find_peaks;
  • NMS: This task can be treated as object detection. [onset, wakeup] is regarded as a bounding boxes, and score is the confident of the box. Therefore, I used a time-series NMS. Using NMS can eliminate redundant boxes with high IOU, which increase our AP.
def apply_nms(dets_arr, thresh):x1 = dets_arr[:, 0]x2 = dets_arr[:, 1]scores = dets_arr[:, 2]areas = x2 - x1order = scores.argsort()[::-1]keep = []while order.size > 0:i = order[0]keep.append(i)xx1 = np.maximum(x1[i], x1[order[1:]])xx2 = np.minimum(x2[i], x2[order[1:]])inter = np.maximum(0.0, xx2 - xx1 + 1)ovr = inter / (areas[i] + areas[order[1:]] - inter)inds = np.where(ovr <= thresh)[0]order = order[inds + 1]dets_nms_arr = dets_arr[keep,:]onset_steps = dets_nms_arr[:, 0].tolist()wakeup_steps = dets_nms_arr[:, 1].tolist()nms_save_steps = np.unique(onset_steps + wakeup_steps).tolist()return nms_save_steps

In addition, we set score_th=0.005 (If it is set too low, a large number of events will be detected and cause online scoring errors, so it is fixed at 0.005 here), and use optuna to simultaneously search the parameter distance in find_peaks and the parameter iou_threshold of NMS. Finally, when distance=72 and iou_threshold=0.995, the best performance is achieved.

import optunadef objective(trial):score_th = 0.005 # trial.suggest_float('score_th', 0.003, 0.006)distance = trial.suggest_int('distance', 20, 80)thresh = trial.suggest_float('thresh', 0.75, 1.)# find peakval_pred_df = post_process_for_seg(keys=keys,preds=preds[:, :, [1, 2]],score_th=score_th,distance=distance,)# nmsval_pred_df = val_pred_df.to_pandas()nms_pred_dfs = NMS_prediction(val_pred_df, thresh, verbose=False)score = event_detection_ap(valid_event_df.to_pandas(), nms_pred_dfs)return -scorestudy = optuna.create_study()
study.optimize(objective, n_trials=100)
print('Best hyperparameters: ', study.best_params)
print('Best score: ', study.best_value)
ExperimentFold0Pubic (5-fold)Private (5-fold)
find_peak-0.7450.787
find_peak+NMS+optuna-0.7460.789

5. Model Ensemble

Finally, we average the output probabilities of the following models and then feed into the post processing methods to detect events. By the way, I tried post-processing the detection events for each model and then concating them, but this resulted in too many detections. Even with NMS, I didn't get a better score.

The number of ensemble models: 4 (types of models) * 5 (fold number) = 20.

ExperimentFold0Pubic (5-fold)Private (5-fold)
model1: CNNSpectrogram + Spec2DCNN + UNet1DDecoder0.772090.7430.784
model2: PANNsFeatureExtractor + Spec2DCNN + UNet1DDecoder0.7770.7430.782
model3: PANNsFeatureExtractor + CenterNet + UNet1DDecoder0.759680.6340.68
model4: TransformerAutoModel0.74680--
model1 + model2(1:1)-0.7460.789
model1 + model2+model3(1:1:0.4)-0.750.786
model1 + model2+model3+model4(1:1:0.4:0.2)0.7520.787

Unfortunately, we only considered CenterNet and Transformer to model ensemble with a tentative attitude on the last day, but surprisingly found that a low-CV-scoring model still has a probability of improving final performance as long as it is heterogeneous compared with your previous models. But we didn’t have more opportunities to submit more, which was a profound lesson for me.

Thoughts not done:

  • Data Augmentation: Shift the time within the batch to increase more time diversity and reduce dependence on hour features.

  • Model: Try more models. Although we try transformer and it didn’t work for us. I am veryyy looking forward to the solutions from top-ranking players.

Thanks again to Kaggle and all Kaggle players. This was a good competition and we learned a lot from it. If you think our solution is useful for you, welcome to upvote and discuss with us.

In addition, this is my first 🥈 silver medal. Thank you everyone for letting me learn a lot. I will continue to work hard. :)

这篇关于Child Mind Institute - Detect Sleep States(2023年第一次Kaggle拿到了银牌总结)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/476406

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

git使用的说明总结

Git使用说明 下载安装(下载地址) macOS: Git - Downloading macOS Windows: Git - Downloading Windows Linux/Unix: Git (git-scm.com) 创建新仓库 本地创建新仓库:创建新文件夹,进入文件夹目录,执行指令 git init ,用以创建新的git 克隆仓库 执行指令用以创建一个本地仓库的

二分最大匹配总结

HDU 2444  黑白染色 ,二分图判定 const int maxn = 208 ;vector<int> g[maxn] ;int n ;bool vis[maxn] ;int match[maxn] ;;int color[maxn] ;int setcolor(int u , int c){color[u] = c ;for(vector<int>::iter

整数Hash散列总结

方法:    step1  :线性探测  step2 散列   当 h(k)位置已经存储有元素的时候,依次探查(h(k)+i) mod S, i=1,2,3…,直到找到空的存储单元为止。其中,S为 数组长度。 HDU 1496   a*x1^2+b*x2^2+c*x3^2+d*x4^2=0 。 x在 [-100,100] 解的个数  const int MaxN = 3000

状态dp总结

zoj 3631  N 个数中选若干数和(只能选一次)<=M 的最大值 const int Max_N = 38 ;int a[1<<16] , b[1<<16] , x[Max_N] , e[Max_N] ;void GetNum(int g[] , int n , int s[] , int &m){ int i , j , t ;m = 0 ;for(i = 0 ;

CSP 2023 提高级第一轮 CSP-S 2023初试题 完善程序第二题解析 未完

一、题目阅读 (最大值之和)给定整数序列 a0,⋯,an−1,求该序列所有非空连续子序列的最大值之和。上述参数满足 1≤n≤105 和 1≤ai≤108。 一个序列的非空连续子序列可以用两个下标 ll 和 rr(其中0≤l≤r<n0≤l≤r<n)表示,对应的序列为 al,al+1,⋯,ar​。两个非空连续子序列不同,当且仅当下标不同。 例如,当原序列为 [1,2,1,2] 时,要计算子序列 [

go基础知识归纳总结

无缓冲的 channel 和有缓冲的 channel 的区别? 在 Go 语言中,channel 是用来在 goroutines 之间传递数据的主要机制。它们有两种类型:无缓冲的 channel 和有缓冲的 channel。 无缓冲的 channel 行为:无缓冲的 channel 是一种同步的通信方式,发送和接收必须同时发生。如果一个 goroutine 试图通过无缓冲 channel

9.8javaweb项目总结

1.主界面用户信息显示 登录成功后,将用户信息存储在记录在 localStorage中,然后进入界面之前通过js来渲染主界面 存储用户信息 将用户信息渲染在主界面上,并且头像设置跳转,到个人资料界面 这里数据库中还没有设置相关信息 2.模糊查找 检测输入框是否有变更,有的话调用方法,进行查找 发送检测请求,然后接收的时候设置最多显示四个类似的搜索结果

java面试常见问题之Hibernate总结

1  Hibernate的检索方式 Ø  导航对象图检索(根据已经加载的对象,导航到其他对象。) Ø  OID检索(按照对象的OID来检索对象。) Ø  HQL检索(使用面向对象的HQL查询语言。) Ø  QBC检索(使用QBC(Qurey By Criteria)API来检索对象。 QBC/QBE离线/在线) Ø  本地SQL检索(使用本地数据库的SQL查询语句。) 包括Hibern