《python每天一小段》-- (11)操作 Excel 详解

2023-12-09 03:15

本文主要是介绍《python每天一小段》-- (11)操作 Excel 详解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎阅读《Python每天一小段》系列!在本篇文章中,将使用Python编写自动化 Excel 操作的程序。

文章目录

      • (1)Python 操作 Excel 详解
      • (2)创建 DataFrame 对象
      • (3)读取 Excel 文件
      • (4)写入 Excel 文件
      • (5)筛选数据
      • (6)排序数据
      • (7)计算数据
      • (8)合并数据
      • (9)删除数据
      • (10)读取csv文件
      • (11)总结

(1)Python 操作 Excel 详解

Excel 是办公软件中常用的工具之一,它可以用于存储、整理和分析数据。Python 是一门强大的编程语言,它可以用于自动化 Excel 操作。

在本教程中,我们将介绍 Python 操作 Excel 的详细知识,包括:

  • 创建 DataFrame 对象
  • 读取 Excel 文件
  • 写入 Excel 文件
  • 筛选数据
  • 排序数据
  • 计算数据
  • 合并数据
  • 删除数据

安装pandas模块

pip install pindas

(2)创建 DataFrame 对象

要操作 Excel 数据,我们需要将 Excel 数据转换为 DataFrame 对象。DataFrame 对象是 pandas 库中的数据结构,它可以用于存储表格数据。

以下代码演示了如何创建 DataFrame 对象:

import pandas as pd# 创建 DataFrame 对象
df = pd.DataFrame({"a": [1, 2, 3],"b": [4, 5, 6],"c": [7, 8, 9]
})# 查看 DataFrame 对象
print(df)

输出结果:

   a  b  c
0  1  4  7
1  2  5  8
2  3  6  9

(3)读取 Excel 文件

要读取 Excel 文件,我们可以使用 pandas 库的 read_excel() 函数。

以下代码演示了如何读取 Excel 文件:

# 读取 Excel 文件
df = pd.read_excel("data.xlsx")# 查看 DataFrame 对象
print(df)

输出结果与上面的代码相同。

我们还可以使用 read_excel() 函数的 nrows 参数指定要读取的行数,以及 usecols 参数指定要读取的列。

以下代码演示了如何读取 Excel 文件的前两行和 a 列和 b 列的数据:

# 读取前两行
df = pd.read_excel("data.xlsx", nrows=2)
print(df)# 读取 a 和 b 列
df = pd.read_excel("data.xlsx", usecols=["a", "b"])
print(df)

输出结果:

   a  b
0  1  4
1  2  5a  b
0  1  4
1  2  5

(4)写入 Excel 文件

要写入 Excel 文件,我们可以使用 pandas 库的 to_excel() 函数。

以下代码演示了如何写入 Excel 文件:

# 写入 Excel 文件
df.to_excel("output.xlsx")

这将创建一个名为 output.xlsx 的 Excel 文件,其中包含 df 对象的数据。

(5)筛选数据

要筛选 Excel 数据,我们可以使用 locquery() 方法。

以下代码演示了如何筛选 a 列值小于 10 的数据:

# 筛选 a 列值小于 10 的数据
df = df[df["a"] < 10]print(df)

输出结果:

   a  b
0  1  4
1  2  5
2  3  6

(6)排序数据

要排序 Excel 数据,我们可以使用 sort_values() 方法。

以下代码演示了如何按 a 列升序排序数据:

# 按 a 列升序排序数据
df = df.sort_values("a")print(df)

输出结果:

   a  b
0  1  4
1  2  5
2  3  6

(7)计算数据

要计算 Excel 数据,我们可以使用 apply() 方法。

以下代码演示了如何计算 a 列和 b 列的和:

# 计算 a 列和 b 列的和
df["sum"] = df["a"] + df["b"]print(df)

输出结果:

   a  b  sum
0  1  4    5
1  2  5    7
2  3  6    9

我们还可以使用 Series.sum() 方法直接计算列的和:

# 计算 a 列的和
sum_a = df["a"].sum()print(sum_a)

输出结果:

6

(8)合并数据

要合并 Excel 数据,我们可以使用 concat() 方法。

以下代码演示了如何合并两个 Excel 文件:

Python

import pandas as pddef export_to_excel(df, file_name, sheet_name):df.to_excel(file_name,sheet_name=sheet_name,index=False,engine="openpyxl")# 创建第一个数据框
df1 = pd.DataFrame({"a1": [1, 2, 3],"b1": [4, 5, 6],"c1": [7, 8, 9]
})# 创建第二个数据框
df2 = pd.DataFrame({"a2": [1, 2, 3],"b2": [4, 5, 6],"c2": [7, 8, 9]
})# 导出第一个数据框到Excel
export_to_excel(df1, "data1.xlsx", "sheet1")# 导出第二个数据框到Excel
export_to_excel(df2, "data2.xlsx", "sheet2")# 读取第一个 Excel 文件df1
print(df1)print("\n")# 读取第二个 Excel 文件df2
print(df2)#合并df1和df2, 合并两个 Excel 文件
merged_df = pd.concat([df1, df2], axis=1)
print(merged_df)

输出结果:

# 读取第一个 Excel 文件df1a1  b1  c1
0   1   4   7
1   2   5   8
2   3   6   9# 读取第二个 Excel 文件df2a2  b2  c2
0   1   4   7
1   2   5   8
2   3   6   9#合并df1和df2, 合并两个 Excel 文件a1  b1  c1  a2  b2  c2
0   1   4   7   1   4   7
1   2   5   8   2   5   8
2   3   6   9   3   6   9

我们还可以使用 merge() 方法合并 Excel 数据,该方法允许我们指定合并的条件。

以下代码演示了如何合并两个 Excel 文件,并根据 a 列进行合并:

# 读取第一个 Excel 文件
print(df1)
print("\n")# 读取第二个 Excel 文件
print(df2)
print("\n")# 合并两个 Excel 文件,并根据 a 列进行合并
merged_df1 = pd.merge(df1['a1'],df2['a2'],left_index=True,right_index=True)
print(merged_df1)

输出结果:

#df1a1  b1  c1
0   1   4   7
1   2   5   8
2   3   6   9#df2a2  b2  c2
0   1   4   7
1   2   5   8
2   3   6   9#合并后a1  a2
0   1   1
1   2   2
2   3   3

(9)删除数据

要删除 Excel 数据,我们可以使用 drop() 方法。

以下代码演示了如何删除 Excel 文件中的一行:

#读取excel文件(df1和df2合并的值)
print(merged_df)
print("\n")#删除第一行
merged_df = merged_df.drop(0)
print(merged_df)

输出结果:

#原数据a1  b1  c1  a2  b2  c2
0   1   4   7   1   4   7
1   2   5   8   2   5   8
2   3   6   9   3   6   9#删除后a1  b1  c1  a2  b2  c2
1   2   5   8   2   5   8
2   3   6   9   3   6   9

我们还可以使用 drop() 方法删除 Excel 文件中的一列:

#读取excel文件(df1和df2合并的值)
print(merged_df)
print("\n")#删除a1列
merged_df = merged_df.drop("a1",axis=1)
print(merged_df)#同时删除两列
#merged_df = merged_df.drop(["b1","b1"],axis=1)

输出结果:

   a1  b1  c1  a2  b2  c2
1   2   5   8   2   5   8
2   3   6   9   3   6   9b1  c1  a2  b2  c2
1   5   8   2   5   8
2   6   9   3   6   9

(10)读取csv文件

读取CSV文件的示例代码:

import pandas as pd# 创建数据框
df = pd.DataFrame({"Column1": [1, 2, 3],"Column2": [4, 5, 6],"Column3": [7, 8, 9]
})# 将数据框写入csv文件
df.to_csv("filename.csv", index=False)# 读取CSV文件
df = pd.read_csv("filename.csv")# 打印数据框内容
print(df)

输出:

   Column1  Column2  Column3
0        1        4        7
1        2        5        8
2        3        6        9

(11)总结

在本文中,介绍了 Python 操作 Excel 的详细知识,包括:

  • 创建 DataFrame 对象
  • 读取 Excel 文件
  • 写入 Excel 文件
  • 筛选数据
  • 排序数据
  • 计算数据
  • 合并数据
  • 删除数据

通过学习本文,将能够使用 Python 进行excel和csv各种操作。

这篇关于《python每天一小段》-- (11)操作 Excel 详解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/472280

相关文章

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python正则表达式匹配和替换的操作指南

《Python正则表达式匹配和替换的操作指南》正则表达式是处理文本的强大工具,Python通过re模块提供了完整的正则表达式功能,本文将通过代码示例详细介绍Python中的正则匹配和替换操作,需要的朋... 目录基础语法导入re模块基本元字符常用匹配方法1. re.match() - 从字符串开头匹配2.

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

通过Docker容器部署Python环境的全流程

《通过Docker容器部署Python环境的全流程》在现代化开发流程中,Docker因其轻量化、环境隔离和跨平台一致性的特性,已成为部署Python应用的标准工具,本文将详细演示如何通过Docker容... 目录引言一、docker与python的协同优势二、核心步骤详解三、进阶配置技巧四、生产环境最佳实践

Python一次性将指定版本所有包上传PyPI镜像解决方案

《Python一次性将指定版本所有包上传PyPI镜像解决方案》本文主要介绍了一个安全、完整、可离线部署的解决方案,用于一次性准备指定Python版本的所有包,然后导出到内网环境,感兴趣的小伙伴可以跟随... 目录为什么需要这个方案完整解决方案1. 项目目录结构2. 创建智能下载脚本3. 创建包清单生成脚本4

MySQL的JDBC编程详解

《MySQL的JDBC编程详解》:本文主要介绍MySQL的JDBC编程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言一、前置知识1. 引入依赖2. 认识 url二、JDBC 操作流程1. JDBC 的写操作2. JDBC 的读操作总结前言本文介绍了mysq

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Redis 的 SUBSCRIBE命令详解

《Redis的SUBSCRIBE命令详解》Redis的SUBSCRIBE命令用于订阅一个或多个频道,以便接收发送到这些频道的消息,本文给大家介绍Redis的SUBSCRIBE命令,感兴趣的朋友跟随... 目录基本语法工作原理示例消息格式相关命令python 示例Redis 的 SUBSCRIBE 命令用于订

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下