GAN生成对抗网络:花卉生成

2023-12-08 19:30
文章标签 生成 网络 对抗 gan 花卉

本文主要是介绍GAN生成对抗网络:花卉生成,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 简介
  • 一、GAN生成对抗网络基础知识
  • 二、数据集介绍
  • 三、代码实现
    • 参数设置
    • 数据处理
    • 搭建网络
    • 定义优化器与损失函数
    • 训练网络
    • 保存网络
    • 结果展示
  • 总结


简介

本篇文章利用pytorch搭建GAN生成对抗网络实现花卉生成的任务

一、GAN生成对抗网络基础知识

关于GAN生成对抗网络的基础知识以下文章有详细讲解,可供参考:
GAN(生成对抗网络)的系统全面介绍(醍醐灌顶)

二、数据集介绍

本文使用花卉数据集,该数据集包含了4317张图片,包含雏菊、蒲公英、玫瑰、向日葵、郁金香五种花卉,我已将数据集拆分为训练集和测试集两部分,本文仅使用了训练集部分,以下是数据集目录:
在这里插入图片描述在这里插入图片描述
数据集已放于以下链接,有需要可自行下载
花卉数据集

三、代码实现

参数设置

step1.参数continue_train:是否继续训练
step2.参数dir:训练集路径
step3.参数batch_size:单次训练图片量
step4.参数device:使用GPU
step5.参数epochs:训练周期
step6.参数generator_num:每k轮训练一次生成器
step7.参数discriminator_num:每k轮训练一次判别器

if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--continue_train', type=bool, default=False, help='continue training')parser.add_argument('--dir', type=str, default='./flowers/train', help='dataset path')parser.add_argument('--batch_size', type=int, default=50, help='batch size')parser.add_argument('--device', type=int, default=0, help='GPU id')parser.add_argument('--epochs', type=int, default=200, help='train epochs')parser.add_argument('--generator_num', type=int, default=5, help='train generator every k epochs')parser.add_argument('--discriminator_num', type=int, default=1, help='train discriminator every k epochs')args = parser.parse_args()main(args)

数据处理

step1.定义训练集中图像输入判别器前的transform操作
step2.准备Dataset与Dataloader

    transform = transforms.Compose([transforms.Resize((96, 96)),  # 将图片resize至 96 * 96transforms.ToTensor(),  # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])data_set = datasets.ImageFolder(root=args.dir, transform=transform)data_loader = dataloader.DataLoader(dataset=data_set, batch_size=args.batch_size, num_workers=4, shuffle=True, drop_last=True)print('already load data...')

搭建网络

step1.生成器使用反卷积,最终输出3 * 96 * 96大小的图片,且像素值 ∈ [ − 1 , 1 ] ∈[-1,1] [1,1]
step2.生成器使用卷积,最终输出判别为真的概率

class Generator(nn.Module):def __init__(self):super(Generator,self).__init__()self.main = nn.Sequential(      # 神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(True),       # 512 × 4 × 4        (1-1)*1+1*(4-1)+0+1 = 4nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(True),      # 256 × 8 × 8     (4-1)*2-2*1+1*(4-1)+0+1 = 8nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(True),  # 128 × 16 × 16nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(True),      # 64 × 32 × 32nn.ConvTranspose2d(64, 3, kernel_size=5, stride=3, padding=1, bias=False),nn.Tanh()       # 3 * 96 * 96)def forward(self, input):return self.main(input)class Discriminator(nn.Module):def __init__(self):super(Discriminator,self).__init__()self.main = nn.Sequential(nn.Conv2d(3, 64, kernel_size=5, stride=3, padding=1, bias=False),nn.LeakyReLU(0.2, inplace=True),        # 64 * 32 * 32nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.LeakyReLU(0.2, inplace=True),         # 128 * 16 * 16nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.LeakyReLU(0.2, inplace=True),  # 256 * 8 * 8nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.LeakyReLU(0.2, inplace=True),  # 512 * 4 * 4nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),nn.Sigmoid()        # 输出一个概率)def forward(self, input):return self.main(input).view(-1)

定义优化器与损失函数

step1.生成器与判别器的优化器都使用Adam
step2.将损失函数使用二元交叉熵损失

    optimizer_G = torch.optim.Adam(model_G.parameters(), lr=2e-4, betas=(0.5, 0.999))optimizer_D = torch.optim.Adam(model_D.parameters(), lr=2e-4, betas=(0.5, 0.999))loss = nn.BCELoss()print('already prepared optimizer and loss_function...')

训练网络

每discriminator_num轮:
step1.输入真图片让判别器鉴别
step2.生成器利用随机噪声生成图片,并让判别器鉴别
step3.计算判别器损失(真鉴别为真,假鉴别为假),反向传播后更新判别器参数
每generator_num轮:
step4.生成器利用随机噪声生成图片,并让判别器鉴别
step5.计算生成器损失(假鉴别为真),反向传播后更新生成器参数
step6.每100轮保存一次结果

    print('start training...')for epoch in range(args.epochs):print('epoch:{}'.format(epoch + 1))for i, data in enumerate(data_loader):if (i + 1) % args.discriminator_num == 0:optimizer_D.zero_grad()real_img = data[0]batchsize = len(real_img)real_img = real_img.cuda(args.device)out_D_real = model_D(real_img)real_labels = torch.ones(batchsize).cuda(args.device)loss_D_real = loss(out_D_real, real_labels)loss_D_real.backward()noise = torch.randn(args.batch_size, 100, 1, 1).cuda(args.device)fake_img = model_G(noise)out_D_fake = model_D(fake_img)fake_labels = torch.zeros(batchsize).cuda(args.device)loss_D_fake = loss(out_D_fake, fake_labels)loss_D_fake.backward()optimizer_D.step()if (i + 1) % args.generator_num == 0:optimizer_G.zero_grad()real_img = data[0]batchsize = len(real_img)noise = torch.randn(args.batch_size, 100, 1, 1).cuda(args.device)fake_img = model_G(noise)out_D_fake = model_D(fake_img)real_labels = torch.ones(batchsize).cuda(args.device)loss_G = loss(out_D_fake, real_labels)loss_G.backward()optimizer_G.step()if (epoch + 1) % 100 == 0:fix_noise = torch.randn(40, 100, 1, 1).cuda(args.device)final_img = model_G(fix_noise)final_img = final_img * 0.5 + 0.5final_img = final_img.cpu()plt.figure(1)for i in range(40):img = final_img[i].detach().numpy()plt.subplot(5, 8, i+1)plt.imshow(np.transpose(img, (1, 2, 0)))plt.savefig("./outcome/{}.png".format(epoch + 1))plt.show()print('end training...')

保存网络

    torch.save(model_G.state_dict(), './generator.pt')torch.save(model_D.state_dict(), './discriminator.pt')print('already saved model...')

结果展示

训练3000轮后得到结果如下:
在这里插入图片描述

总结

以上就是利用生成对抗网络实现图像生成的介绍,完整代码如下:

import argparse
import torchvision.datasets as datasets
import torch.utils.data.dataloader as dataloader
import torchvision.transforms as transforms
import torch.nn as nn
import torch
import numpy as np
import matplotlib.pyplot as pltclass Generator(nn.Module):def __init__(self):super(Generator,self).__init__()self.main = nn.Sequential(      # 神经网络模块将按照在传入构造器的顺序依次被添加到计算图中执行nn.ConvTranspose2d(100, 512, kernel_size=4, stride=1, padding=0, bias=False),nn.BatchNorm2d(512),nn.ReLU(True),       # 512 × 4 × 4        (1-1)*1+1*(4-1)+0+1 = 4nn.ConvTranspose2d(512, 256, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.ReLU(True),      # 256 × 8 × 8     (4-1)*2-2*1+1*(4-1)+0+1 = 8nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.ReLU(True),  # 128 × 16 × 16nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(64),nn.ReLU(True),      # 64 × 32 × 32nn.ConvTranspose2d(64, 3, kernel_size=5, stride=3, padding=1, bias=False),nn.Tanh()       # 3 * 96 * 96)def forward(self, input):return self.main(input)class Discriminator(nn.Module):def __init__(self):super(Discriminator,self).__init__()self.main = nn.Sequential(nn.Conv2d(3, 64, kernel_size=5, stride=3, padding=1, bias=False),nn.LeakyReLU(0.2, inplace=True),        # 64 * 32 * 32nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(128),nn.LeakyReLU(0.2, inplace=True),         # 128 * 16 * 16nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(256),nn.LeakyReLU(0.2, inplace=True),  # 256 * 8 * 8nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1, bias=False),nn.BatchNorm2d(512),nn.LeakyReLU(0.2, inplace=True),  # 512 * 4 * 4nn.Conv2d(512, 1, kernel_size=4, stride=1, padding=0, bias=False),nn.Sigmoid()        # 输出一个概率)def forward(self, input):return self.main(input).view(-1)def main(args):transform = transforms.Compose([transforms.Resize((96, 96)),  # 将图片resize至 96 * 96transforms.ToTensor(),  # 转换为张量transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])data_set = datasets.ImageFolder(root=args.dir, transform=transform)data_loader = dataloader.DataLoader(dataset=data_set, batch_size=args.batch_size, num_workers=4, shuffle=True, drop_last=True)print('already load data...')model_G = Generator()model_D = Discriminator()if args.continue_train == True:model_G.load_state_dict(torch.load('./generator.pt'))model_D.load_state_dict(torch.load('./discriminator.pt'))model_G.train()model_D.train()print('already prepared model...')optimizer_G = torch.optim.Adam(model_G.parameters(), lr=2e-4, betas=(0.5, 0.999))optimizer_D = torch.optim.Adam(model_D.parameters(), lr=2e-4, betas=(0.5, 0.999))loss = nn.BCELoss()print('already prepared optimizer and loss_function...')if torch.cuda.is_available() == True:model_G.cuda(args.device)model_D.cuda(args.device)loss.cuda(args.device)print('already in GPU...')print('start training...')for epoch in range(args.epochs):print('epoch:{}'.format(epoch + 1))for i, data in enumerate(data_loader):if (i + 1) % args.discriminator_num == 0:optimizer_D.zero_grad()real_img = data[0]batchsize = len(real_img)real_img = real_img.cuda(args.device)out_D_real = model_D(real_img)real_labels = torch.ones(batchsize).cuda(args.device)loss_D_real = loss(out_D_real, real_labels)loss_D_real.backward()noise = torch.randn(args.batch_size, 100, 1, 1).cuda(args.device)fake_img = model_G(noise)out_D_fake = model_D(fake_img)fake_labels = torch.zeros(batchsize).cuda(args.device)loss_D_fake = loss(out_D_fake, fake_labels)loss_D_fake.backward()optimizer_D.step()if (i + 1) % args.generator_num == 0:optimizer_G.zero_grad()real_img = data[0]batchsize = len(real_img)noise = torch.randn(args.batch_size, 100, 1, 1).cuda(args.device)fake_img = model_G(noise)out_D_fake = model_D(fake_img)real_labels = torch.ones(batchsize).cuda(args.device)loss_G = loss(out_D_fake, real_labels)loss_G.backward()optimizer_G.step()if (epoch + 1) % 10 == 0:fix_noise = torch.randn(40, 100, 1, 1).cuda(args.device)final_img = model_G(fix_noise)final_img = final_img * 0.5 + 0.5final_img = final_img.cpu()plt.figure(1)for i in range(40):img = final_img[i].detach().numpy()plt.subplot(5, 8, i+1)plt.imshow(np.transpose(img, (1, 2, 0)))plt.savefig("./outcome/{}.png".format(epoch + 1))plt.show()print('end training...')torch.save(model_G.state_dict(), './generator.pt')torch.save(model_D.state_dict(), './discriminator.pt')print('already saved model...')if __name__ == '__main__':parser = argparse.ArgumentParser()parser.add_argument('--continue_train', type=bool, default=False, help='continue training')parser.add_argument('--dir', type=str, default='./flowers/train', help='dataset path')parser.add_argument('--batch_size', type=int, default=50, help='batch size')parser.add_argument('--device', type=int, default=0, help='GPU id')parser.add_argument('--epochs', type=int, default=3000, help='train epochs')parser.add_argument('--generator_num', type=int, default=5, help='train generator every k epochs')parser.add_argument('--discriminator_num', type=int, default=1, help='train discriminator every k epochs')args = parser.parse_args()main(args)

这篇关于GAN生成对抗网络:花卉生成的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/471063

相关文章

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

Debian 13升级后网络转发等功能异常怎么办? 并非错误而是管理机制变更

《Debian13升级后网络转发等功能异常怎么办?并非错误而是管理机制变更》很多朋友反馈,更新到Debian13后网络转发等功能异常,这并非BUG而是Debian13Trixie调整... 日前 Debian 13 Trixie 发布后已经有众多网友升级到新版本,只不过升级后发现某些功能存在异常,例如网络转

Python从Word文档中提取图片并生成PPT的操作代码

《Python从Word文档中提取图片并生成PPT的操作代码》在日常办公场景中,我们经常需要从Word文档中提取图片,并将这些图片整理到PowerPoint幻灯片中,手动完成这一任务既耗时又容易出错,... 目录引言背景与需求解决方案概述代码解析代码核心逻辑说明总结引言在日常办公场景中,我们经常需要从 W

C#使用Spire.XLS快速生成多表格Excel文件

《C#使用Spire.XLS快速生成多表格Excel文件》在日常开发中,我们经常需要将业务数据导出为结构清晰的Excel文件,本文将手把手教你使用Spire.XLS这个强大的.NET组件,只需几行C#... 目录一、Spire.XLS核心优势清单1.1 性能碾压:从3秒到0.5秒的质变1.2 批量操作的优雅

Python使用python-pptx自动化操作和生成PPT

《Python使用python-pptx自动化操作和生成PPT》这篇文章主要为大家详细介绍了如何使用python-pptx库实现PPT自动化,并提供实用的代码示例和应用场景,感兴趣的小伙伴可以跟随小编... 目录使用python-pptx操作PPT文档安装python-pptx基础概念创建新的PPT文档查看

Python开发简易网络服务器的示例详解(新手入门)

《Python开发简易网络服务器的示例详解(新手入门)》网络服务器是互联网基础设施的核心组件,它本质上是一个持续运行的程序,负责监听特定端口,本文将使用Python开发一个简单的网络服务器,感兴趣的小... 目录网络服务器基础概念python内置服务器模块1. HTTP服务器模块2. Socket服务器模块

在ASP.NET项目中如何使用C#生成二维码

《在ASP.NET项目中如何使用C#生成二维码》二维码(QRCode)已广泛应用于网址分享,支付链接等场景,本文将以ASP.NET为示例,演示如何实现输入文本/URL,生成二维码,在线显示与下载的完整... 目录创建前端页面(Index.cshtml)后端二维码生成逻辑(Index.cshtml.cs)总结

Python实现数据可视化图表生成(适合新手入门)

《Python实现数据可视化图表生成(适合新手入门)》在数据科学和数据分析的新时代,高效、直观的数据可视化工具显得尤为重要,下面:本文主要介绍Python实现数据可视化图表生成的相关资料,文中通过... 目录前言为什么需要数据可视化准备工作基本图表绘制折线图柱状图散点图使用Seaborn创建高级图表箱线图热

Go语言网络故障诊断与调试技巧

《Go语言网络故障诊断与调试技巧》在分布式系统和微服务架构的浪潮中,网络编程成为系统性能和可靠性的核心支柱,从高并发的API服务到实时通信应用,网络的稳定性直接影响用户体验,本文面向熟悉Go基本语法和... 目录1. 引言2. Go 语言网络编程的优势与特色2.1 简洁高效的标准库2.2 强大的并发模型2.

SQLServer中生成雪花ID(Snowflake ID)的实现方法

《SQLServer中生成雪花ID(SnowflakeID)的实现方法》:本文主要介绍在SQLServer中生成雪花ID(SnowflakeID)的实现方法,文中通过示例代码介绍的非常详细,... 目录前言认识雪花ID雪花ID的核心特点雪花ID的结构(64位)雪花ID的优势雪花ID的局限性雪花ID的应用场景