数字图像处理(实践篇)十九 漫水填充

2023-12-08 11:28

本文主要是介绍数字图像处理(实践篇)十九 漫水填充,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一 漫水填充算法--FloodFill

二 涉及的函数

三 实践


一 漫水填充算法--FloodFill

FloodFill漫水填充算法就是选中与种子点相连接的区域,利用指定颜色进行区域颜色填充。可以通过设置连通方式或像素的范围控制填充的效果。通常是用来标记或者分离图像的一部分,以便做进一步分析和处理。

二 涉及的函数

cv2.floodFill()函数原型如下:

cv2.floodFill(image, mask, seedPoint, newVal, loDiff=None, upDiff=None, flags=None)

输入:

image:【输入/输出】1或者3通道、 8bit或者浮点图像。仅当参数flags的FLOODFILL_MASK_ONLY标志位被设置时image不会被修改,否则的话,image会被修改。

mask:【输入/输出】 操作掩码,必须为单通道、8bit,且比原图image宽、高多2个像素。使用前必须先初始化。只有对于掩码层上对应为0的位置才能泛洪,所以掩码层初始化为0矩阵。

seedPoint:漫水填充的种子点,起始像素点。根据该点的像素判断决定和其相近颜色的像素点,是否被泛洪处理。

newVal:被填充的像素点的新像素值(B,G,R)。

loDiff:(loDiff1,loDiff2,loDiff3),添加进种子点区域条件的下界差值。例如,seed(B0,G0,R0),泛洪区域下界为(B0-loDiff1,G0-loDiff2,R0-loDiff3)。

upDiff:(upDiff1,upDiff2,upDiff3),添加进种子点区域条件的上界差值。例如,seed(B0,G0,R0),泛洪区域上界为(B0+upDiff1,G0+upDiff2,R0+upDiff3)。

flag:为泛洪算法的处理模式。

当为CV_FLOODFILL_FIXED_RANGE时,待处理的像素点与种子点作比较,在范围之内,则填充此像素 。 改变图像,填充newvalue。      

当为CV_FLOODFILL_MASK_ONLY 时,函数不填充原始图像iamge,而是填充掩码图像。不改变原图像,也就是newvalue参数失去作用,而是改变对应区域的掩码。

返回:

image:【输入/输出】

mask:【输入/输出】 操作掩码。

三 实践

实践①:不同的seedPoint

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):im = cv2.imread(img_path)h, w = im.shape[:2]im1 = im.copy()im2 = im.copy()im3 = im.copy()im4 = im.copy()im5 = im.copy()mask1 = np.zeros([h+2, w+2], np.uint8)mask2 = np.zeros([h+2, w+2], np.uint8)mask3 = np.zeros([h+2, w+2], np.uint8)mask4 = np.zeros([h+2, w+2], np.uint8)mask5 = np.zeros([h+2, w+2], np.uint8)cv2.floodFill(im1,  mask1, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im2,  mask2, (90, 80), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im3,  mask3, (100, 150), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im4,  mask4, (180, 180), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im5,  mask5, (200, 190), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)fig = plt.figure(figsize=(10, 10))im = dealImg(im)im1 = dealImg(im1)im2 = dealImg(im2)im3 = dealImg(im3)im4 = dealImg(im4)im5 = dealImg(im5)titles = ["img", "seedPoint=(20, 20)", "seedPoint=(40, 40)", "seedPoint=(60, 70)", "seedPoint=(100, 150)", "seedPoint=(200, 190)"]images = [im, im1, im2, im3, im4, im5]for i in range(6):plt.subplot(2, 3, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("4.jpeg")pass
  • 效果图

实践②:指定位置的填充

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):im = cv2.imread(img_path)h, w = im.shape[:2]print(h, w)im1 = im.copy()im2 = im.copy()im3 = im.copy()mask1 = np.ones([h+2, w+2], np.uint8)mask1[0:100, 0:100] = 0mask2 = np.ones([h+2, w+2], np.uint8)mask2[0:200, 0:200] = 0mask3 = np.ones([h+2, w+2], np.uint8)mask3[0:w, 0:h] = 0cv2.floodFill(im1,  mask1, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im2,  mask2, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im3,  mask3, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)fig = plt.figure(figsize=(10, 10))im = dealImg(im)im1 = dealImg(im1)im2 = dealImg(im2)im3 = dealImg(im3)titles = ["img", "mask1_result", "mask2_result", "mask3_result"]images = [im, im1, im2, im3]for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("4.jpeg")pass
  • 效果图

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

数字图像处理(实践篇)十六 基于分水岭算法的图像分割

数字图像处理(实践篇)十七 Shi-Tomasi 角点检测

数字图像处理(实践篇)十八 人脸检测

这篇关于数字图像处理(实践篇)十九 漫水填充的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469674

相关文章

Java Optional的使用技巧与最佳实践

《JavaOptional的使用技巧与最佳实践》在Java中,Optional是用于优雅处理null的容器类,其核心目标是显式提醒开发者处理空值场景,避免NullPointerExce... 目录一、Optional 的核心用途二、使用技巧与最佳实践三、常见误区与反模式四、替代方案与扩展五、总结在 Java

Spring Boot循环依赖原理、解决方案与最佳实践(全解析)

《SpringBoot循环依赖原理、解决方案与最佳实践(全解析)》循环依赖指两个或多个Bean相互直接或间接引用,形成闭环依赖关系,:本文主要介绍SpringBoot循环依赖原理、解决方案与最... 目录一、循环依赖的本质与危害1.1 什么是循环依赖?1.2 核心危害二、Spring的三级缓存机制2.1 三

Python 中的 with open文件操作的最佳实践

《Python中的withopen文件操作的最佳实践》在Python中,withopen()提供了一个简洁而安全的方式来处理文件操作,它不仅能确保文件在操作完成后自动关闭,还能处理文件操作中的异... 目录什么是 with open()?为什么使用 with open()?使用 with open() 进行

Spring Boot 配置文件之类型、加载顺序与最佳实践记录

《SpringBoot配置文件之类型、加载顺序与最佳实践记录》SpringBoot的配置文件是灵活且强大的工具,通过合理的配置管理,可以让应用开发和部署更加高效,无论是简单的属性配置,还是复杂... 目录Spring Boot 配置文件详解一、Spring Boot 配置文件类型1.1 applicatio

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

springboot集成Deepseek4j的项目实践

《springboot集成Deepseek4j的项目实践》本文主要介绍了springboot集成Deepseek4j的项目实践,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录Deepseek4j快速开始Maven 依js赖基础配置基础使用示例1. 流式返回示例2. 进阶

Android App安装列表获取方法(实践方案)

《AndroidApp安装列表获取方法(实践方案)》文章介绍了Android11及以上版本获取应用列表的方案调整,包括权限配置、白名单配置和action配置三种方式,并提供了相应的Java和Kotl... 目录前言实现方案         方案概述一、 androidManifest 三种配置方式

Spring Boot中定时任务Cron表达式的终极指南最佳实践记录

《SpringBoot中定时任务Cron表达式的终极指南最佳实践记录》本文详细介绍了SpringBoot中定时任务的实现方法,特别是Cron表达式的使用技巧和高级用法,从基础语法到复杂场景,从快速启... 目录一、Cron表达式基础1.1 Cron表达式结构1.2 核心语法规则二、Spring Boot中定