数字图像处理(实践篇)十九 漫水填充

2023-12-08 11:28

本文主要是介绍数字图像处理(实践篇)十九 漫水填充,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一 漫水填充算法--FloodFill

二 涉及的函数

三 实践


一 漫水填充算法--FloodFill

FloodFill漫水填充算法就是选中与种子点相连接的区域,利用指定颜色进行区域颜色填充。可以通过设置连通方式或像素的范围控制填充的效果。通常是用来标记或者分离图像的一部分,以便做进一步分析和处理。

二 涉及的函数

cv2.floodFill()函数原型如下:

cv2.floodFill(image, mask, seedPoint, newVal, loDiff=None, upDiff=None, flags=None)

输入:

image:【输入/输出】1或者3通道、 8bit或者浮点图像。仅当参数flags的FLOODFILL_MASK_ONLY标志位被设置时image不会被修改,否则的话,image会被修改。

mask:【输入/输出】 操作掩码,必须为单通道、8bit,且比原图image宽、高多2个像素。使用前必须先初始化。只有对于掩码层上对应为0的位置才能泛洪,所以掩码层初始化为0矩阵。

seedPoint:漫水填充的种子点,起始像素点。根据该点的像素判断决定和其相近颜色的像素点,是否被泛洪处理。

newVal:被填充的像素点的新像素值(B,G,R)。

loDiff:(loDiff1,loDiff2,loDiff3),添加进种子点区域条件的下界差值。例如,seed(B0,G0,R0),泛洪区域下界为(B0-loDiff1,G0-loDiff2,R0-loDiff3)。

upDiff:(upDiff1,upDiff2,upDiff3),添加进种子点区域条件的上界差值。例如,seed(B0,G0,R0),泛洪区域上界为(B0+upDiff1,G0+upDiff2,R0+upDiff3)。

flag:为泛洪算法的处理模式。

当为CV_FLOODFILL_FIXED_RANGE时,待处理的像素点与种子点作比较,在范围之内,则填充此像素 。 改变图像,填充newvalue。      

当为CV_FLOODFILL_MASK_ONLY 时,函数不填充原始图像iamge,而是填充掩码图像。不改变原图像,也就是newvalue参数失去作用,而是改变对应区域的掩码。

返回:

image:【输入/输出】

mask:【输入/输出】 操作掩码。

三 实践

实践①:不同的seedPoint

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):im = cv2.imread(img_path)h, w = im.shape[:2]im1 = im.copy()im2 = im.copy()im3 = im.copy()im4 = im.copy()im5 = im.copy()mask1 = np.zeros([h+2, w+2], np.uint8)mask2 = np.zeros([h+2, w+2], np.uint8)mask3 = np.zeros([h+2, w+2], np.uint8)mask4 = np.zeros([h+2, w+2], np.uint8)mask5 = np.zeros([h+2, w+2], np.uint8)cv2.floodFill(im1,  mask1, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im2,  mask2, (90, 80), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im3,  mask3, (100, 150), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im4,  mask4, (180, 180), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im5,  mask5, (200, 190), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)fig = plt.figure(figsize=(10, 10))im = dealImg(im)im1 = dealImg(im1)im2 = dealImg(im2)im3 = dealImg(im3)im4 = dealImg(im4)im5 = dealImg(im5)titles = ["img", "seedPoint=(20, 20)", "seedPoint=(40, 40)", "seedPoint=(60, 70)", "seedPoint=(100, 150)", "seedPoint=(200, 190)"]images = [im, im1, im2, im3, im4, im5]for i in range(6):plt.subplot(2, 3, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("4.jpeg")pass
  • 效果图

实践②:指定位置的填充

  • 代码
import numpy as np
import cv2
import matplotlib.pyplot as plt
def dealImg(img):b, g, r = cv2.split(img)img_rgb = cv2.merge([r, g, b])return img_rgb
def dealImageResult(img_path):im = cv2.imread(img_path)h, w = im.shape[:2]print(h, w)im1 = im.copy()im2 = im.copy()im3 = im.copy()mask1 = np.ones([h+2, w+2], np.uint8)mask1[0:100, 0:100] = 0mask2 = np.ones([h+2, w+2], np.uint8)mask2[0:200, 0:200] = 0mask3 = np.ones([h+2, w+2], np.uint8)mask3[0:w, 0:h] = 0cv2.floodFill(im1,  mask1, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im2,  mask2, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)cv2.floodFill(im3,  mask3, (20, 20), (255, 255, 0), (100, 100, 50), (50, 50, 50), cv2.FLOODFILL_FIXED_RANGE)fig = plt.figure(figsize=(10, 10))im = dealImg(im)im1 = dealImg(im1)im2 = dealImg(im2)im3 = dealImg(im3)titles = ["img", "mask1_result", "mask2_result", "mask3_result"]images = [im, im1, im2, im3]for i in range(4):plt.subplot(2, 2, i + 1), plt.imshow(images[i], "gray")plt.title("{}".format(titles[i]), fontsize=20, ha='center')plt.xticks([]), plt.yticks([])# plt.subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=0.3, hspace=0)# plt.tight_layout()plt.show()fig.savefig('test_results.jpg', bbox_inches='tight')
if __name__ == '__main__':dealImageResult("4.jpeg")pass
  • 效果图

前文回顾

 入门篇目录

 数字图像处理(入门篇)一 图像的数字化与表示

 数字图像处理(入门篇)二 颜色空间

 数字图像处理(入门篇)三 灰度化

 数字图像处理(入门篇)四 像素关系

 数字图像处理(入门篇)五 图像数据预处理之颜色空间转换

 数字图像处理(入门篇)六 图像数据预处理之坐标变化

 数字图像处理(入门篇)七 图像数据预处理之灰度变化

 数字图像处理(入门篇)八 图像数据预处理之直方图

 数字图像处理(入门篇)九 图像数据预处理之滤波

 数字图像处理(入门篇)十 边缘检测

 数字图像处理(入门篇)十一 形态学处理

 数字图像处理(入门篇)十二 自适应阈值分割

 数字图像处理(入门篇)十三 仿射变换

 数字图像处理(入门篇)十四 透视变换

实践篇目录

数字图像处理(实践篇)一 将图像中的指定目标用bBox框起来吧!

数字图像处理(实践篇)二 画出图像中目标的轮廓

数字图像处理(实践篇)三 将两张图像按照指定比例融合

数字图像处理(实践篇)四 图像拼接-基于SIFT特征点和RANSAC方法

数字图像处理(实践篇)五 使用Grabcut算法进行物体分割

数字图像处理(实践篇)六 利用hough变换进行直线检测

数字图像处理(实践篇)七 利用霍夫变换进行圆环检测

数字图像处理(实践篇)八 Harris角点检测

数字图像处理(实践篇)九 基于边缘的模板匹配

数字图像处理(实践篇)十 图像质量检测

数字图像处理(实践篇)十一 图像中的条形码解析

数字图像处理(实践篇)十二 基于小波变换的图像降噪

数字图像处理(实践篇)十三 数据增强之给图像添加噪声!

数字图像处理(实践篇)十四 图像金字塔

数字图像处理(实践篇)十五 基于傅里叶变换的高通滤波和低通滤波

数字图像处理(实践篇)十六 基于分水岭算法的图像分割

数字图像处理(实践篇)十七 Shi-Tomasi 角点检测

数字图像处理(实践篇)十八 人脸检测

这篇关于数字图像处理(实践篇)十九 漫水填充的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469674

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

Go Mongox轻松实现MongoDB的时间字段自动填充

《GoMongox轻松实现MongoDB的时间字段自动填充》这篇文章主要为大家详细介绍了Go语言如何使用mongox库,在插入和更新数据时自动填充时间字段,从而提升开发效率并减少重复代码,需要的可以... 目录前言时间字段填充规则Mongox 的安装使用 Mongox 进行插入操作使用 Mongox 进行更

C++实现封装的顺序表的操作与实践

《C++实现封装的顺序表的操作与实践》在程序设计中,顺序表是一种常见的线性数据结构,通常用于存储具有固定顺序的元素,与链表不同,顺序表中的元素是连续存储的,因此访问速度较快,但插入和删除操作的效率可能... 目录一、顺序表的基本概念二、顺序表类的设计1. 顺序表类的成员变量2. 构造函数和析构函数三、顺序表

python实现简易SSL的项目实践

《python实现简易SSL的项目实践》本文主要介绍了python实现简易SSL的项目实践,包括CA.py、server.py和client.py三个模块,文中通过示例代码介绍的非常详细,对大家的学习... 目录运行环境运行前准备程序实现与流程说明运行截图代码CA.pyclient.pyserver.py参

使用C++实现单链表的操作与实践

《使用C++实现单链表的操作与实践》在程序设计中,链表是一种常见的数据结构,特别是在动态数据管理、频繁插入和删除元素的场景中,链表相比于数组,具有更高的灵活性和高效性,尤其是在需要频繁修改数据结构的应... 目录一、单链表的基本概念二、单链表类的设计1. 节点的定义2. 链表的类定义三、单链表的操作实现四、

Spring Boot统一异常拦截实践指南(最新推荐)

《SpringBoot统一异常拦截实践指南(最新推荐)》本文介绍了SpringBoot中统一异常处理的重要性及实现方案,包括使用`@ControllerAdvice`和`@ExceptionHand... 目录Spring Boot统一异常拦截实践指南一、为什么需要统一异常处理二、核心实现方案1. 基础组件

SpringBoot项目中Maven剔除无用Jar引用的最佳实践

《SpringBoot项目中Maven剔除无用Jar引用的最佳实践》在SpringBoot项目开发中,Maven是最常用的构建工具之一,通过Maven,我们可以轻松地管理项目所需的依赖,而,... 目录1、引言2、Maven 依赖管理的基础概念2.1 什么是 Maven 依赖2.2 Maven 的依赖传递机

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬