redis 持久化(persistence)

2023-12-08 07:38
文章标签 redis 持久 persistence

本文主要是介绍redis 持久化(persistence),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章转自:http://redis.readthedocs.org/en/latest/topic/persistence.html


持久化(persistence)

本文档翻译自 http://redis.io/topics/persistence 。

这篇文章提供了 Redis 持久化的技术性描述,推荐所有 Redis 用户阅读。

要更广泛地了解 Redis 持久化,以及这种持久化所保证的耐久性(durability),请参考文章 Redis persistence demystified (中文)。

Redis 持久化

Redis 提供了多种不同级别的持久化方式:

  • RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot)。
  • AOF 持久化记录服务器执行的所有写操作命令,并在服务器启动时,通过重新执行这些命令来还原数据集。AOF 文件中的命令全部以 Redis 协议的格式来保存,新命令会被追加到文件的末尾。Redis 还可以在后台对 AOF 文件进行重写(rewrite),使得 AOF 文件的体积不会超出保存数据集状态所需的实际大小。
  • Redis 还可以同时使用 AOF 持久化和 RDB 持久化。在这种情况下,当 Redis 重启时,它会优先使用 AOF 文件来还原数据集,因为 AOF 文件保存的数据集通常比 RDB 文件所保存的数据集更完整。
  • 你甚至可以关闭持久化功能,让数据只在服务器运行时存在。

了解 RDB 持久化和 AOF 持久化之间的异同是非常重要的,以下几个小节将详细地介绍这这两种持久化功能,并对它们的相同和不同之处进行说明。

RDB 的优点

  • RDB 是一个非常紧凑(compact)的文件,它保存了 Redis 在某个时间点上的数据集。这种文件非常适合用于进行备份:比如说,你可以在最近的 24 小时内,每小时备份一次 RDB 文件,并且在每个月的每一天,也备份一个 RDB 文件。这样的话,即使遇上问题,也可以随时将数据集还原到不同的版本。
  • RDB 非常适用于灾难恢复(disaster recovery):它只有一个文件,并且内容都非常紧凑,可以(在加密后)将它传送到别的数据中心,或者亚马逊 S3 中。
  • RDB 可以最大化 Redis 的性能:父进程在保存 RDB 文件时唯一要做的就是 fork 出一个子进程,然后这个子进程就会处理接下来的所有保存工作,父进程无须执行任何磁盘 I/O 操作。
  • RDB 在恢复大数据集时的速度比 AOF 的恢复速度要快。

RDB 的缺点

  • 如果你需要尽量避免在服务器故障时丢失数据,那么 RDB 不适合你。虽然 Redis 允许你设置不同的保存点(save point)来控制保存 RDB 文件的频率,但是,因为RDB 文件需要保存整个数据集的状态,所以它并不是一个轻松的操作。因此你可能会至少 5 分钟才保存一次 RDB 文件。在这种情况下,一旦发生故障停机,你就可能会丢失好几分钟的数据。
  • 每次保存 RDB 的时候,Redis 都要 fork() 出一个子进程,并由子进程来进行实际的持久化工作。在数据集比较庞大时, fork() 可能会非常耗时,造成服务器在某某毫秒内停止处理客户端;如果数据集非常巨大,并且 CPU 时间非常紧张的话,那么这种停止时间甚至可能会长达整整一秒。虽然 AOF 重写也需要进行 fork() ,但无论 AOF 重写的执行间隔有多长,数据的耐久性都不会有任何损失。

AOF 的优点

  • 使用 AOF 持久化会让 Redis 变得非常耐久(much more durable):你可以设置不同的 fsync 策略,比如无 fsync ,每秒钟一次 fsync ,或者每次执行写入命令时 fsync 。AOF 的默认策略为每秒钟 fsync 一次,在这种配置下,Redis 仍然可以保持良好的性能,并且就算发生故障停机,也最多只会丢失一秒钟的数据( fsync 会在后台线程执行,所以主线程可以继续努力地处理命令请求)。
  • AOF 文件是一个只进行追加操作的日志文件(append only log),因此对 AOF 文件的写入不需要进行 seek ,即使日志因为某些原因而包含了未写入完整的命令(比如写入时磁盘已满,写入中途停机,等等),redis-check-aof 工具也可以轻易地修复这种问题。
  • Redis 可以在 AOF 文件体积变得过大时,自动地在后台对 AOF 进行重写:重写后的新 AOF 文件包含了恢复当前数据集所需的最小命令集合。整个重写操作是绝对安全的,因为 Redis 在创建新 AOF 文件的过程中,会继续将命令追加到现有的 AOF 文件里面,即使重写过程中发生停机,现有的 AOF 文件也不会丢失。而一旦新 AOF 文件创建完毕,Redis 就会从旧 AOF 文件切换到新 AOF 文件,并开始对新 AOF 文件进行追加操作。
  • AOF 文件有序地保存了对数据库执行的所有写入操作,这些写入操作以 Redis 协议的格式保存,因此 AOF 文件的内容非常容易被人读懂,对文件进行分析(parse)也很轻松。导出(export) AOF 文件也非常简单:举个例子,如果你不小心执行了 FLUSHALL 命令,但只要 AOF 文件未被重写,那么只要停止服务器,移除 AOF 文件末尾的 FLUSHALL 命令,并重启 Redis ,就可以将数据集恢复到 FLUSHALL 执行之前的状态。

AOF 的缺点

  • 对于相同的数据集来说,AOF 文件的体积通常要大于 RDB 文件的体积。
  • 根据所使用的 fsync 策略,AOF 的速度可能会慢于 RDB 。在一般情况下,每秒 fsync 的性能依然非常高,而关闭 fsync 可以让 AOF 的速度和 RDB 一样快,即使在高负荷之下也是如此。不过在处理巨大的写入载入时,RDB 可以提供更有保证的最大延迟时间(latency)。
  • AOF 在过去曾经发生过这样的 bug :因为个别命令的原因,导致 AOF 文件在重新载入时,无法将数据集恢复成保存时的原样。(举个例子,阻塞命令 BRPOPLPUSH 就曾经引起过这样的 bug 。)测试套件里为这种情况添加了测试:它们会自动生成随机的、复杂的数据集,并通过重新载入这些数据来确保一切正常。虽然这种 bug 在 AOF 文件中并不常见,但是对比来说,RDB 几乎是不可能出现这种 bug 的。

RDB 和 AOF ,我应该用哪一个?

一般来说,如果想达到足以媲美 PostgreSQL 的数据安全性,你应该同时使用两种持久化功能。

如果你非常关心你的数据,但仍然可以承受数分钟以内的数据丢失,那么你可以只使用 RDB 持久化。

有很多用户都只使用 AOF 持久化,但我们并不推荐这种方式:因为定时生成 RDB 快照(snapshot)非常便于进行数据库备份,并且 RDB 恢复数据集的速度也要比 AOF 恢复的速度要快,除此之外,使用 RDB 还可以避免之前提到的 AOF 程序的 bug 。

因为以上提到的种种原因,未来我们可能会将 AOF 和 RDB 整合成单个持久化模型。(这是一个长期计划。)

接下来的几个小节将介绍 RDB 和 AOF 的更多细节。

RDB 快照

在默认情况下,Redis 将数据库快照保存在名字为 dump.rdb 的二进制文件中。

你可以对 Redis 进行设置,让它在“ N 秒内数据集至少有 M 个改动”这一条件被满足时,自动保存一次数据集。

你也可以通过调用 SAVE 或者 BGSAVE ,手动让 Redis 进行数据集保存操作。

比如说,以下设置会让 Redis 在满足“ 60 秒内有至少有 1000 个键被改动”这一条件时,自动保存一次数据集:

save 60 1000

这种持久化方式被称为快照(snapshot)。

快照的运作方式

当 Redis 需要保存 dump.rdb 文件时,服务器执行以下操作:

  1. Redis 调用 fork() ,同时拥有父进程和子进程。
  2. 子进程将数据集写入到一个临时 RDB 文件中。
  3. 当子进程完成对新 RDB 文件的写入时,Redis 用新 RDB 文件替换原来的 RDB 文件,并删除旧的 RDB 文件。

这种工作方式使得 Redis 可以从写时复制(copy-on-write)机制中获益。

只进行追加操作的文件(append-only file,AOF)

快照功能并不是非常耐久(durable):如果 Redis 因为某些原因而造成故障停机,那么服务器将丢失最近写入、且仍未保存到快照中的那些数据。

尽管对于某些程序来说,数据的耐久性并不是最重要的考虑因素,但是对于那些追求完全耐久能力(full durability)的程序来说,快照功能就不太适用了。

从 1.1 版本开始,Redis 增加了一种完全耐久的持久化方式:AOF 持久化。

你可以通过修改配置文件来打开 AOF 功能:

appendonly yes

从现在开始,每当 Redis 执行一个改变数据集的命令时(比如 SET),这个命令就会被追加到 AOF 文件的末尾。

这样的话,当 Redis 重新启时,程序就可以通过重新执行 AOF 文件中的命令来达到重建数据集的目的。

AOF 重写

因为 AOF 的运作方式是不断地将命令追加到文件的末尾,所以随着写入命令的不断增加,AOF 文件的体积也会变得越来越大。

举个例子,如果你对一个计数器调用了 100 次 INCR ,那么仅仅是为了保存这个计数器的当前值,AOF 文件就需要使用 100 条记录(entry)。

然而在实际上,只使用一条 SET 命令已经足以保存计数器的当前值了,其余 99 条记录实际上都是多余的。

为了处理这种情况,Redis 支持一种有趣的特性:可以在不打断服务客户端的情况下,对 AOF 文件进行重建(rebuild)。

执行 BGREWRITEAOF 命令,Redis 将生成一个新的 AOF 文件,这个文件包含重建当前数据集所需的最少命令。

Redis 2.2 需要自己手动执行 BGREWRITEAOF 命令;Redis 2.4 则可以自动触发 AOF 重写,具体信息请查看 2.4 的示例配置文件。

AOF 的耐久性如何?

你可以配置 Redis 多久才将数据 fsync 到磁盘一次。

有三个选项:

  • 每次有新命令追加到 AOF 文件时就执行一次 fsync :非常慢,也非常安全。
  • 每秒 fsync 一次:足够快(和使用 RDB 持久化差不多),并且在故障时只会丢失 1 秒钟的数据。
  • 从不 fsync :将数据交给操作系统来处理。更快,也更不安全的选择。

推荐(并且也是默认)的措施为每秒 fsync 一次,这种 fsync 策略可以兼顾速度和安全性。

总是 fsync 的策略在实际使用中非常慢,即使在 Redis 2.0 对相关的程序进行了改进之后仍是如此 ——频繁调用 fsync 注定了这种策略不可能快得起来。

如果 AOF 文件出错了,怎么办?

服务器可能在程序正在对 AOF 文件进行写入时停机,如果停机造成了 AOF 文件出错(corrupt),那么 Redis 在重启时会拒绝载入这个 AOF 文件,从而确保数据的一致性不会被破坏。

当发生这种情况时,可以用以下方法来修复出错的 AOF 文件:

  1. 为现有的 AOF 文件创建一个备份。
  2. 使用 Redis 附带的 redis-check-aof 程序,对原来的 AOF 文件进行修复。
$ redis-check-aof --fix
  1. (可选)使用 diff -u 对比修复后的 AOF 文件和原始 AOF 文件的备份,查看两个文件之间的不同之处。
  2. 重启 Redis 服务器,等待服务器载入修复后的 AOF 文件,并进行数据恢复。

AOF 的运作方式

AOF 重写和 RDB 创建快照一样,都巧妙地利用了写时复制机制。

以下是 AOF 重写的执行步骤:

  1. Redis 执行 fork() ,现在同时拥有父进程和子进程。
  2. 子进程开始将新 AOF 文件的内容写入到临时文件。
  3. 对于所有新执行的写入命令,父进程一边将它们累积到一个内存缓存中,一边将这些改动追加到现有 AOF 文件的末尾:这样即使在重写的中途发生停机,现有的 AOF 文件也还是安全的。
  4. 当子进程完成重写工作时,它给父进程发送一个信号,父进程在接收到信号之后,将内存缓存中的所有数据追加到新 AOF 文件的末尾。
  5. 搞定!现在 Redis 原子地用新文件替换旧文件,之后所有命令都会直接追加到新 AOF 文件的末尾。

怎么从 RDB 持久化切换到 AOF 持久化

在 Redis 2.2 或以上版本,可以在不重启的情况下,从 RDB 切换到 AOF :

  1. 为最新的 dump.rdb 文件创建一个备份。
  2. 将备份放到一个安全的地方。
  3. 执行以下两条命令:
redis-cli> CONFIG SET appendonly yesredis-cli> CONFIG SET save ""
  1. 确保命令执行之后,数据库的键的数量没有改变。
  2. 确保写命令会被正确地追加到 AOF 文件的末尾。

步骤 3 执行的第一条命令开启了 AOF 功能:Redis 会阻塞直到初始 AOF 文件创建完成为止,之后 Redis 会继续处理命令请求,并开始将写入命令追加到 AOF 文件末尾。

步骤 3 执行的第二条命令用于关闭 RDB 功能。这一步是可选的,如果你愿意的话,也可以同时使用 RDB 和 AOF 这两种持久化功能。

别忘了在 redis.conf 中打开 AOF 功能!否则的话,服务器重启之后,之前通过 CONFIG SET 设置的配置就会被遗忘,程序会按原来的配置来启动服务器。

译注:原文这里还有介绍 2.0 版本的切换方式,考虑到 2.0 已经很老旧了,这里省略了对那部分文档的翻译,有需要的请参考原文。

RDB 和 AOF 之间的相互作用

在版本号大于等于 2.4 的 Redis 中,BGSAVE 执行的过程中,不可以执行 BGREWRITEAOF 。反过来说,在 BGREWRITEAOF 执行的过程中,也不可以执行 BGSAVE

这可以防止两个 Redis 后台进程同时对磁盘进行大量的 I/O 操作。

如果 BGSAVE 正在执行,并且用户显示地调用 BGREWRITEAOF 命令,那么服务器将向用户回复一个 OK 状态,并告知用户,BGREWRITEAOF 已经被预定执行:一旦 BGSAVE 执行完毕,BGREWRITEAOF 就会正式开始。

当 Redis 启动时,如果 RDB 持久化和 AOF 持久化都被打开了,那么程序会优先使用 AOF 文件来恢复数据集,因为 AOF 文件所保存的数据通常是最完整的。

备份 Redis 数据

在阅读这个小节前,先将下面这句话铭记于心:一定要备份你的数据库!

磁盘故障,节点失效,诸如此类的问题都可能让你的数据消失不见,不进行备份是非常危险的。

Redis 对于数据备份是非常友好的,因为你可以在服务器运行的时候对 RDB 文件进行复制:RDB 文件一旦被创建,就不会进行任何修改。当服务器要创建一个新的 RDB 文件时,它先将文件的内容保存在一个临时文件里面,当临时文件写入完毕时,程序才使用 rename(2) 原子地用临时文件替换原来的 RDB 文件。

这也就是说,无论何时,复制 RDB 文件都是绝对安全的。

以下是我们的建议:

  • 创建一个定期任务(cron job),每小时将一个 RDB 文件备份到一个文件夹,并且每天将一个 RDB 文件备份到另一个文件夹。
  • 确保快照的备份都带有相应的日期和时间信息,每次执行定期任务脚本时,使用 find 命令来删除过期的快照:比如说,你可以保留最近 48 小时内的每小时快照,还可以保留最近一两个月的每日快照。
  • 至少每天一次,将 RDB 备份到你的数据中心之外,或者至少是备份到你运行 Redis 服务器的物理机器之外。

容灾备份

Redis 的容灾备份基本上就是对数据进行备份,并将这些备份传送到多个不同的外部数据中心。

容灾备份可以在 Redis 运行并产生快照的主数据中心发生严重的问题时,仍然让数据处于安全状态。

因为很多 Redis 用户都是创业者,他们没有大把大把的钱可以浪费,所以下面介绍的都是一些实用又便宜的容灾备份方法:

  • Amazon S3 ,以及其他类似 S3 的服务,是一个构建灾难备份系统的好地方。最简单的方法就是将你的每小时或者每日 RDB 备份加密并传送到 S3 。对数据的加密可以通过 gpg -c 命令来完成(对称加密模式)。记得把你的密码放到几个不同的、安全的地方去(比如你可以把密码复制给你组织里最重要的人物)。同时使用多个储存服务来保存数据文件,可以提升数据的安全性。
  • 传送快照可以使用 SCP 来完成(SSH 的组件)。以下是简单并且安全的传送方法:买一个离你的数据中心非常远的 VPS ,装上 SSH ,创建一个无口令的 SSH 客户端 key ,并将这个 key 添加到 VPS 的 authorized_keys 文件中,这样就可以向这个 VPS 传送快照备份文件了。为了达到最好的数据安全性,至少要从两个不同的提供商那里各购买一个 VPS 来进行数据容灾备份。

需要注意的是,这类容灾系统如果没有小心地进行处理的话,是很容易失效的。

最低限度下,你应该在文件传送完毕之后,检查所传送备份文件的体积和原始快照文件的体积是否相同。如果你使用的是 VPS ,那么还可以通过比对文件的 SHA1 校验和来确认文件是否传送完整。

另外,你还需要一个独立的警报系统,让它在负责传送备份文件的传送器(transfer)失灵时通知你。


这篇关于redis 持久化(persistence)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/469060

相关文章

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Redis中使用布隆过滤器解决缓存穿透问题

一、缓存穿透(失效)问题 缓存穿透是指查询一个一定不存在的数据,由于缓存中没有命中,会去数据库中查询,而数据库中也没有该数据,并且每次查询都不会命中缓存,从而每次请求都直接打到了数据库上,这会给数据库带来巨大压力。 二、布隆过滤器原理 布隆过滤器(Bloom Filter)是一种空间效率很高的随机数据结构,它利用多个不同的哈希函数将一个元素映射到一个位数组中的多个位置,并将这些位置的值置

Lua 脚本在 Redis 中执行时的原子性以及与redis的事务的区别

在 Redis 中,Lua 脚本具有原子性是因为 Redis 保证在执行脚本时,脚本中的所有操作都会被当作一个不可分割的整体。具体来说,Redis 使用单线程的执行模型来处理命令,因此当 Lua 脚本在 Redis 中执行时,不会有其他命令打断脚本的执行过程。脚本中的所有操作都将连续执行,直到脚本执行完成后,Redis 才会继续处理其他客户端的请求。 Lua 脚本在 Redis 中原子性的原因

laravel框架实现redis分布式集群原理

在app/config/database.php中配置如下: 'redis' => array('cluster' => true,'default' => array('host' => '172.21.107.247','port' => 6379,),'redis1' => array('host' => '172.21.107.248','port' => 6379,),) 其中cl

Redis的rehash机制

在Redis中,键值对(Key-Value Pair)存储方式是由字典(Dict)保存的,而字典底层是通过哈希表来实现的。通过哈希表中的节点保存字典中的键值对。我们知道当HashMap中由于Hash冲突(负载因子)超过某个阈值时,出于链表性能的考虑,会进行Resize的操作。Redis也一样。 在redis的具体实现中,使用了一种叫做渐进式哈希(rehashing)的机制来提高字典的缩放效率,避

【吊打面试官系列-Redis面试题】说说 Redis 哈希槽的概念?

大家好,我是锋哥。今天分享关于 【说说 Redis 哈希槽的概念?】面试题,希望对大家有帮助; 说说 Redis 哈希槽的概念? Redis 集群没有使用一致性 hash,而是引入了哈希槽的概念,Redis 集群有 16384 个哈希槽,每个 key 通过 CRC16 校验后对 16384 取模来决定放置哪个槽, 集群的每个节点负责一部分 hash 槽。

Redis地理数据类型GEO

通常要计算两个地理位置的距离不是很方便,这里可以直接通过Redis提供的GEO操作来完成地理位置相关的计算 1)添加地理位置 语法:geoadd key longitude latitude member [longitude latitude member] ...字段说明:key:存放地理位置的集合名称longitude:地理坐标的经度latitude:地理坐标的纬度member:表示这

Redis-主从集群

主从架构 单节点Redis的并发能力是有上限的,要进一步提高Redis的并发能力,就需要搭建主从集群,实现读写分离。 主从数据同步原理 全量同步 主从第一次建立连接时,会执行全量同步,将master节点的所有数据都拷贝给slave节点,流程: 判断是否是第一次同步,如果是,返回版本信息(replication id 和offset),将salve节点的版本信息变为master的

Redis安装使用总结

一、下载安装 从 github 下载:https://github.com/MSOpenTech/redis/releases 或者 https://github.com/ServiceStack/redis-windows 解压缩,如图: 二、配置 打开redis.windows-sevice.conf文件, 2.1 绑定ip:搜索127.0.0.1 ,发现bind 127.0.0.

面对Redis数据量庞大时的应对策略

面对Redis数据量庞大时的应对策略,我们可以从多个维度出发,包括数据分片、内存优化、持久化策略、使用集群、硬件升级、数据淘汰策略、以及数据结构选择等。以下是对这些策略的详细探讨: 一、数据分片(Sharding) 当Redis数据量持续增长,单个实例的处理能力可能达到瓶颈。此时,可以通过数据分片将数据分散存储到多个Redis实例中,以实现水平扩展。分片的主要策略包括: 一致性哈希:使用一