RT_Thread_使用FAL组件配置stm32f407片上flash读写

2023-12-08 04:44

本文主要是介绍RT_Thread_使用FAL组件配置stm32f407片上flash读写,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、RT_Thread Settings打开FAL组件

2、定义struct fal_flash_dev类型的flash设备

2.1、struct fal_flash_dev

先看下struct fal_flash_dev的具体成员,有flash设备名字、flash起始地址、flash大小、块大小(执行擦除时的最小颗粒)、操作函数(init、read、write、erase)、写操作最小颗粒度;

struct fal_flash_dev
{char name[FAL_DEV_NAME_MAX];/* flash device start address and len  */uint32_t addr;size_t len;/* the block size in the flash for erase minimum granularity */size_t blk_size;struct{int (*init)(void);int (*read)(long offset, uint8_t *buf, size_t size);int (*write)(long offset, const uint8_t *buf, size_t size);int (*erase)(long offset, size_t size);} ops;/* write minimum granularity, unit: bit.1(nor flash)/ 8(stm32f2/f4)/ 32(stm32f1)/ 64(stm32l4)0 will not take effect. */size_t write_gran;
};
typedef struct fal_flash_dev *fal_flash_dev_t;
2.1.1、blk_size执行擦除时的最小颗粒

1、明确flash擦除操作的对象:扇区、全部;

2、找到stm32f407扇区的大小

主存储器一共12个扇区,4个16K、1个64K、7个128K;

上面指的是F407xG,是1M的flash,F407xE是512K的flash,“理论上”相应的就是3个128K。

2.2、定义flash设备

2.2.1、drv_flash_f4.c的整体介绍

第一部分:宏定义各扇区的起始地址

第二部分:读、写、擦除

第三部分:使用了FAL之后的FLASH设备定义以及对于的读、写、擦除操作函数

2.2.2、修改drv_flash_f4.c的第三部分

如果直接编译会报错,找不到STM32_FLASH_START_ADRESS_XX和FLASH_SIZE_GRANULARITY_XX.

根据2.1、struct fal_flash_dev,知道报错这两个成员指的是flash起始地址、flash大小;

再根据2.1.1中Flash模块构成图和drv_flash_f4.c的第一部分的宏定义,得到如下flash设备定义:

//芯片型号:STM32407xG
//起始地址
#define STM32_FLASH_START_ADRESS_16K        ADDR_FLASH_SECTOR_0
#define STM32_FLASH_START_ADRESS_64K        ADDR_FLASH_SECTOR_4
#define STM32_FLASH_START_ADRESS_128K       ADDR_FLASH_SECTOR_5
//大小
#define FLASH_SIZE_GRANULARITY_16K          (4*16*1024)         //4个16K
#define FLASH_SIZE_GRANULARITY_64K          (64*1024)           //1个64K
#define FLASH_SIZE_GRANULARITY_128K         (7*128*1024)        //7个128Kconst struct fal_flash_dev stm32_onchip_flash_16k = { "onchip_flash_16k", STM32_FLASH_START_ADRESS_16K, FLASH_SIZE_GRANULARITY_16K, (16 * 1024), {NULL, fal_flash_read_16k, fal_flash_write_16k, fal_flash_erase_16k} };
const struct fal_flash_dev stm32_onchip_flash_64k = { "onchip_flash_64k", STM32_FLASH_START_ADRESS_64K, FLASH_SIZE_GRANULARITY_64K, (64 * 1024), {NULL, fal_flash_read_64k, fal_flash_write_64k, fal_flash_erase_64k} };
const struct fal_flash_dev stm32_onchip_flash_128k = { "onchip_flash_128k", STM32_FLASH_START_ADRESS_128K, FLASH_SIZE_GRANULARITY_128K, (128 * 1024), {NULL, fal_flash_read_128k, fal_flash_write_128k, fal_flash_erase_128k} };

3、fal_cfg.h

这个文件需要自己新建,然后添加头文件路径;

extern引入刚才定义的三个flash设备,然后定义成FLASH设备表FAL_FLASH_DEV_TABLE;

定义分区表FAL_PART_TABLE,这里要注意的是使用的是偏移地址而不是偏移地址;

#ifndef APPLICATIONS_FAL_CFG_H_
#define APPLICATIONS_FAL_CFG_H_#include <rtconfig.h>
#include <board.h>/* ===================== Flash device Configuration ========================= */
extern const struct fal_flash_dev stm32_onchip_flash_16k,stm32_onchip_flash_64k,stm32_onchip_flash_128k;/* flash device table */
#define FAL_FLASH_DEV_TABLE                 \
{                                           \&stm32_onchip_flash_16k,                \&stm32_onchip_flash_64k,                \&stm32_onchip_flash_128k,               \
}
/* ====================== Partition Configuration ========================== */
#ifdef FAL_PART_HAS_TABLE_CFG
/* partition table */
#define FAL_PART_TABLE                                                                  \
{                                                                                       \{FAL_PART_MAGIC_WORD,"part1","onchip_flash_16k",    0           ,64*1024    , 0},   \{FAL_PART_MAGIC_WORD,"part2","onchip_flash_64k",    0           ,64*1024    , 0},   \{FAL_PART_MAGIC_WORD,"part3","onchip_flash_128k",   0           ,6*128*1024 , 0},   \{FAL_PART_MAGIC_WORD,"part4","onchip_flash_128k",   6*128*1024  ,1*128*1024 , 0},   \
}
#endif /* FAL_PART_HAS_TABLE_CFG */#endif /* APPLICATIONS_FAL_CFG_H_ */

4、msh验证

调用FAL初始化函数,fal_init();

4.1、上电打印FLASH设备表和分区表

4.2、查看支持的指令

4.3、选择要操作的分区

4.4、读-写-读

4.5、擦除

擦除是对于扇区来说的,所以写了擦1个字节也不会真的擦一个字节。

4.6、性能测试

至少对于一个扇区进行测试,所以虽然写1024但实际是131072,131072是128K,定义blk_size的值。

对于128K的空间,擦除0.001s,写入0.524s,读出0.047s,不仅看出擦除的速度非常快,写入的速度最慢,对于写入的慢速也有一个数据来量化;

5、API测试

参考资料

首先根据名称找到分区,然后进行读、写、擦除操作,简单测试如下:

int main(void)
{int count = 1;uint8_t read_buf[16]={0},write_buf[16]={0};const struct fal_partition * config_info;//初始化FALfal_init();         //查找flash分区//const struct fal_partition *fal_partition_find(const char *name)config_info = fal_partition_find("part4");//读取//int fal_partition_read(const struct fal_partition *part, uint32_t addr, uint8_t *buf, size_t size)fal_partition_read(config_info,0,read_buf,16);LOG_D("read config data:\n");for(count=0;count<16;count++){rt_kprintf("%02x ",read_buf[count]);}rt_kprintf("\n");//擦除//int fal_partition_erase(const struct fal_partition *part, uint32_t addr, size_t size)fal_partition_erase(config_info,0,128*1024);//写入//int fal_partition_write(const struct fal_partition *part, uint32_t addr, const uint8_t *buf, size_t size)LOG_D("start write config data...");fal_partition_write(config_info,0,write_buf,16);LOG_D("write done.");//读取//int fal_partition_read(const struct fal_partition *part, uint32_t addr, uint8_t *buf, size_t size)fal_partition_read(config_info,0,read_buf,16);LOG_D("read config data:\n");for(count=0;count<16;count++){rt_kprintf("%02x ",read_buf[count]);}rt_kprintf("\n");while (count++){//rt_kprintf("Hello World!\n");rt_thread_mdelay(1000);}return RT_EOK;
}

参考链接:

RT-Thread 文档中心_FAL使用说明

RT-Thread 文档中心_FAL的API文档

这篇关于RT_Thread_使用FAL组件配置stm32f407片上flash读写的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/468565

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个