搜索推荐技术-爱奇艺搜索引擎技术

2023-12-08 00:45

本文主要是介绍搜索推荐技术-爱奇艺搜索引擎技术,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、爱奇艺的搜索引擎框架示意图

在这里插入图片描述即通过召回系统,即基于文本匹配的matching system,得到大量视频资源的候选集,经过粗排和精排,最后返回给用户。重点在于召回模块和排序模块。

二、召回模块

召回模块比较重要的是基础相关性,类比于传统的切词倒排索引;还有基于深度学习模型的索引,类比于向量索引。
在这里插入图片描述

1.基础相关性

通过对用户的query进行切词,将右边的视频资源的文本描述信息构建构建倒排索引,此过程为精确匹配过程,词匹配则倒排索引拉回归并,然后返回用户。
需要注意的是切词粒度和词的权重问题。不同的词的粒度会影响你是否可以通过倒排索引召回内容;词权重会影响你在相关性计算的时候的最终得分。
基础相关性解决不了的问题,被归为四类:词汇的同义多义问题、语言表达差异、输入错误兼容、泛语义召回。

2.基于深度学习模型

在搜索场景下,用一些nlp工具,能够把词表示成低维的向量,该向量可以表示词与词之间的相关性,在网络里面加入rnn,cnn等机制,把网络做的足够复杂,以提取更加有效的匹配的特征。
在这里插入图片描述
组合起来,就形成了最终的召回模块
在这里插入图片描述

三、排序模块

在这里插入图片描述在这里插入图片描述

1.目标

选择的是list wise方法。我们采用的优化指标是ndcg,这在搜索引擎中是应用的非常广泛的评价指标。它包含两个参数:

r(i)代表第i个结果的相关性,

i代表i个结果的排序位置。

直观理解:i越小,r(i)越大,ndcg越大,越靠前的结果约相关,这个指标就越高。

2.样本

用户的点击行为,点击并不代表喜欢,点击后的行为也需要考虑进来。
在这里插入图片描述

3.特征

如何把排序场景描述的非常准确,把固定问题泛化,在向量的维度表达出来,即特征提取。

Query维度:意图类别(喜欢那个类型的数据),时效性偏好
document维度:质量特征(码流、码率、用户评论、视频帧、视频标签、类别、来源等);相关性特征:命中特征,bm25等
后验特征:包括用户真实点击率,观看时长,满意程度、点击位置(马太效应影响)、各种维度交叉特征
在这里插入图片描述

4.模型

在这里插入图片描述dnn排序框架。

底层是query和document的一些描述文本做多粒度切词,之后做embedding然后做加权平均,得到document和query的向量表达,拼接这两组向量,同时再做点积,(两个向量越来越相近,拼接的时候希望上层网络学到两个向量的相似性,需要有足够的样本和正负样例,所以我们自己做了点积),同时用稠密特征,即在gbdt中用到的特征抽取出来,与embedding特征做拼接,最后经过三个全连接层,接sigmoid函数,就可以得到样本的score,并在此基础上用ndcg的衡量标准去计算损失,从而反向优化网络结构。

参考

https://mp.weixin.qq.com/s?__biz=MzU1NTMyOTI4Mw==&mid=2247487111&idx=1&sn=0466151a7745795694ee6b66838ef263&chksm=fbd4bcebcca335fd6038ab853b9a73ce1147c953594df2aea6fd1c1db013191086f4c656f5d2&scene=27#wechat_redirect

这篇关于搜索推荐技术-爱奇艺搜索引擎技术的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467900

相关文章

SpringBoot3实现Gzip压缩优化的技术指南

《SpringBoot3实现Gzip压缩优化的技术指南》随着Web应用的用户量和数据量增加,网络带宽和页面加载速度逐渐成为瓶颈,为了减少数据传输量,提高用户体验,我们可以使用Gzip压缩HTTP响应,... 目录1、简述2、配置2.1 添加依赖2.2 配置 Gzip 压缩3、服务端应用4、前端应用4.1 N

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Java利用JSONPath操作JSON数据的技术指南

《Java利用JSONPath操作JSON数据的技术指南》JSONPath是一种强大的工具,用于查询和操作JSON数据,类似于SQL的语法,它为处理复杂的JSON数据结构提供了简单且高效... 目录1、简述2、什么是 jsONPath?3、Java 示例3.1 基本查询3.2 过滤查询3.3 递归搜索3.4

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2

查看Oracle数据库中UNDO表空间的使用情况(最新推荐)

《查看Oracle数据库中UNDO表空间的使用情况(最新推荐)》Oracle数据库中查看UNDO表空间使用情况的4种方法:DBA_TABLESPACES和DBA_DATA_FILES提供基本信息,V$... 目录1. 通过 DBjavascriptA_TABLESPACES 和 DBA_DATA_FILES

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

OpenManus本地部署实战亲测有效完全免费(最新推荐)

《OpenManus本地部署实战亲测有效完全免费(最新推荐)》文章介绍了如何在本地部署OpenManus大语言模型,包括环境搭建、LLM编程接口配置和测试步骤,本文给大家讲解的非常详细,感兴趣的朋友一... 目录1.概况2.环境搭建2.1安装miniconda或者anaconda2.2 LLM编程接口配置2

Python使用DeepSeek进行联网搜索功能详解

《Python使用DeepSeek进行联网搜索功能详解》Python作为一种非常流行的编程语言,结合DeepSeek这一高性能的深度学习工具包,可以方便地处理各种深度学习任务,本文将介绍一下如何使用P... 目录一、环境准备与依赖安装二、DeepSeek简介三、联网搜索与数据集准备四、实践示例:图像分类1.

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)

《Vue项目的甘特图组件之dhtmlx-gantt使用教程和实现效果展示(推荐)》文章介绍了如何使用dhtmlx-gantt组件来实现公司的甘特图需求,并提供了一个简单的Vue组件示例,文章还分享了一... 目录一、首先 npm 安装插件二、创建一个vue组件三、业务页面内 引用自定义组件:四、dhtmlx