linux-2.6.22.6分析——内核分析

2023-12-07 23:32
文章标签 分析 linux 内核 2.6 22.6

本文主要是介绍linux-2.6.22.6分析——内核分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

入口:

ENTRY(stext)
msrcpsr_c, #PSR_F_BIT | PSR_I_BIT | SVC_MODE @ 管理模式
                                                @ 禁止中断
mrc p15, 0, r9, c0, c0                  @ 获得cpu的ID
bl __lookup_processor_type @ r5=procinfo r9=cpuid
movsr10, r5         @ invalid processor (r5=0)?
beq__error_p                         @ yes, error 'p'
bl __lookup_machine_type          @ r5=machinfo,获取机器ID,见注释1
movsr8, r5         @ invalid machine (r5=0)?
beq__error_a                         @ yes, error 'a'
bl__create_page_tables                    @创建页表
       adrlr, __enable_mmu                 @ 启动MMU 
       start_kernel
              printk(linux_banner); //打印内核版本信息
              setup_arch(&command_line); //这两个函数用于处理u-boot传递进来的启动参数,见注释2
              setup_command_line(command_line);
              console_init(); //初始化控制台
              rest_init();
                    kernel_thread(kernel_init, NULL, CLONE_FS | CLONE_SIGHAND);
                           kernel_init
                                  prepare_namespace();
                                         mount_root(); //挂接根文件系统
                                  init_post
                                        sys_open((const char __user *) "/dev/console", O_RDWR, 0)//打开控制端
                                        sys_dup(0)
                                        run_init_process("/sbin/init");
                                        run_init_process("/etc/init");
                                        run_init_process("/bin/init");
                                        run_init_process("/bin/sh");

注释1:

3: .long .
.long __arch_info_begin
.long __arch_info_end

...................................................................................................
.type __lookup_machine_type, %function
__lookup_machine_type:
adr r3, 3b                       @r3=标号3处的物理地址
ldmia r3, {r4, r5, r6}   @r4=".",即标号3处的虚拟地址
                                                @r5=__arch_info_begin
                                                @r6=__arch_info_end
sub r3, r3, r4 @ get offset between virt&phys
add r5, r5, r3 @ convert virt addresses to
add r6, r6, r3 @ physical address space
1: ldr r3, [r5, #MACHINFO_TYPE]
teq r3, r1                 @bootloader传参的时候r1里面存放的机器ID
beq 2f
add r5, r5, #SIZEOF_MACHINE_DESC
cmp r5, r6
blo 1b
mov r5, #0
2: mov pc, lr
通过这个循环我们知道,会在某个特殊定义的段里面找到各个ID跟传进来的ID相比较,有匹配项才可以!
这个段在链接脚本里面定义:
__arch_info_begin = .;
*(.arch.info.init)
__arch_info_end = .;
那么这个段里面到底都定义了什么东西呢?我们发现:
#define MACHINE_START(_type,_name)
static const struct machine_desc __mach_desc_##_type
__used
__attribute__((__section__(".arch.info.init"))) = {
.nr = MACH_TYPE_##_type,
.name = _name,

#define MACHINE_END
};


又有:

MACHINE_START(S3C2440, "SMDK2440")
/* Maintainer: Ben Dooks <ben@fluff.org> */
.phys_io = S3C2410_PA_UART,
.io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
.boot_params = S3C2410_SDRAM_PA + 0x100, //这就是我们定义的存放传参的地址

.init_irq = s3c24xx_init_irq,
.map_io = smdk2440_map_io,
.init_machine = smdk2440_machine_init,
.timer = &s3c24xx_timer,
MACHINE_END

所以:
static const struct machine_desc __mach_desc_ S3C2440 
__used
__attribute__((__section__(".arch.info.init"))) = {
.nr = MACH_TYPE_ S3C2440 ,
.name  "SMDK2440" ,

/* Maintainer: Ben Dooks <ben@fluff.org> */
.phys_io = S3C2410_PA_UART,
.io_pg_offst = (((u32)S3C24XX_VA_UART) >> 18) & 0xfffc,
.boot_params = S3C2410_SDRAM_PA + 0x100, //这就是我们定义的存放传参的地址

.init_irq = s3c24xx_init_irq,
.map_io = smdk2440_map_io,
.init_machine = smdk2440_machine_init,
.timer = &s3c24xx_timer,
};
这就很清楚了,内核定义了一个 machine_desc  结构体,里面存放了内核所支持的机器ID,以及一些初始化函数。这个结构体被强制存放在 .arch.info.init段里面!
我们可以看看这个段的内容:
struct machine_desc {
unsigned int nr; /* 机器ID*/
unsigned int phys_io; /* start of physical io */
unsigned int io_pg_offst; /* byte offset for io 
* page tabe entry */

const char *name; /* architecture name */
unsigned long boot_params;   /* u-boot传参地址 */

unsigned int video_start; /* start of video RAM */
unsigned int video_end; /* end of video RAM */

unsigned int reserve_lp0 :1; /* never has lp0 */
unsigned int reserve_lp1 :1; /* never has lp1 */
unsigned int reserve_lp2 :1; /* never has lp2 */
unsigned int soft_reboot :1; /* soft reboot */
void (*fixup)(struct machine_desc *,
struct tag *, char **,
struct meminfo *);
void (*map_io)(void);/* IO mapping function */
void (*init_irq)(void);
struct sys_timer *timer; /* system tick timer */
void (*init_machine)(void);
};

总结一下就是:内核支持多少中单板就会定义多少个 machine_desc结构体,这些结构体存放在 .arch.info.init段里面,启动内核的时候,内核会根据u-boot传进来的机器id去遍历匹配 .arch.info.init段里面的ID, 来判断该内核是否支持该单板!

注释2:
setup_arch
mdesc = setup_machine(machine_arch_type);//根据机器id找到其对应的 machine_desc结构体
       machine_desc结构体里面存放着传参地址,取出传参,根据传参进行相关设置!
      parse_cmdline//   将命令行放到 .early_param.init段里面
我们来看一下这个段的内容:
#define __early_param(name,fn)
static struct early_params __early_##fn __used
__attribute__((__section__(".early_param.init"))) = { name, fn }

对于下面这个命令我们来展开:
__early_param("initrd=", early_initrd);

static struct early_params __early_ early_initrd __used
__attribute__((__section__(".early_param.init"))) = {  "initrd=" ,   early_initrd }

它的意思就是将各个命令对应的结构体放在 .early_param.init段里面,真正执行命的时候,会根据命令的名字找到其对应结构体,然后调用对应的函数!

这篇关于linux-2.6.22.6分析——内核分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/467719

相关文章

SpringBoot中六种批量更新Mysql的方式效率对比分析

《SpringBoot中六种批量更新Mysql的方式效率对比分析》文章比较了MySQL大数据量批量更新的多种方法,指出REPLACEINTO和ONDUPLICATEKEY效率最高但存在数据风险,MyB... 目录效率比较测试结构数据库初始化测试数据批量修改方案第一种 for第二种 case when第三种

解决1093 - You can‘t specify target table报错问题及原因分析

《解决1093-Youcan‘tspecifytargettable报错问题及原因分析》MySQL1093错误因UPDATE/DELETE语句的FROM子句直接引用目标表或嵌套子查询导致,... 目录报js错原因分析具体原因解决办法方法一:使用临时表方法二:使用JOIN方法三:使用EXISTS示例总结报错原

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

Linux线程之线程的创建、属性、回收、退出、取消方式

《Linux线程之线程的创建、属性、回收、退出、取消方式》文章总结了线程管理核心知识:线程号唯一、创建方式、属性设置(如分离状态与栈大小)、回收机制(join/detach)、退出方法(返回/pthr... 目录1. 线程号2. 线程的创建3. 线程属性4. 线程的回收5. 线程的退出6. 线程的取消7.

Linux下进程的CPU配置与线程绑定过程

《Linux下进程的CPU配置与线程绑定过程》本文介绍Linux系统中基于进程和线程的CPU配置方法,通过taskset命令和pthread库调整亲和力,将进程/线程绑定到特定CPU核心以优化资源分配... 目录1 基于进程的CPU配置1.1 对CPU亲和力的配置1.2 绑定进程到指定CPU核上运行2 基于

golang程序打包成脚本部署到Linux系统方式

《golang程序打包成脚本部署到Linux系统方式》Golang程序通过本地编译(设置GOOS为linux生成无后缀二进制文件),上传至Linux服务器后赋权执行,使用nohup命令实现后台运行,完... 目录本地编译golang程序上传Golang二进制文件到linux服务器总结本地编译Golang程序

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

MySQL中的LENGTH()函数用法详解与实例分析

《MySQL中的LENGTH()函数用法详解与实例分析》MySQLLENGTH()函数用于计算字符串的字节长度,区别于CHAR_LENGTH()的字符长度,适用于多字节字符集(如UTF-8)的数据验证... 目录1. LENGTH()函数的基本语法2. LENGTH()函数的返回值2.1 示例1:计算字符串

Linux在线解压jar包的实现方式

《Linux在线解压jar包的实现方式》:本文主要介绍Linux在线解压jar包的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux在线解压jar包解压 jar包的步骤总结Linux在线解压jar包在 Centos 中解压 jar 包可以使用 u

linux解压缩 xxx.jar文件进行内部操作过程

《linux解压缩xxx.jar文件进行内部操作过程》:本文主要介绍linux解压缩xxx.jar文件进行内部操作,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、解压文件二、压缩文件总结一、解压文件1、把 xxx.jar 文件放在服务器上,并进入当前目录#