C# Onnx 百度飞桨开源PP-YOLOE-Plus目标检测

2023-12-07 17:15

本文主要是介绍C# Onnx 百度飞桨开源PP-YOLOE-Plus目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

效果

模型信息

项目

代码 

下载


C# Onnx 百度飞桨开源PP-YOLOE-Plus目标检测

效果

模型信息

Inputs
-------------------------
name:image
tensor:Float[1, 3, 640, 640]
name:scale_factor
tensor:Float[1, 2]
---------------------------------------------------------------

Outputs
-------------------------
name:multiclass_nms3_0.tmp_0
tensor:Float[-1, 6]
name:multiclass_nms3_0.tmp_2
tensor:Int32[1]
---------------------------------------------------------------

项目

VS2022

.net framework 4.8

OpenCvSharp 4.8

Microsoft.ML.OnnxRuntime 1.16.2

代码 

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using System.IO;
using System.Text;

namespace Onnx_Demo
{
    public partial class frmMain : Form
    {
        public frmMain()
        {
            InitializeComponent();
        }

        string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";
        string image_path = "";

        DateTime dt1 = DateTime.Now;
        DateTime dt2 = DateTime.Now;

        float confThreshold = 0.5f;

        int inpWidth;
        int inpHeight;

        Mat image;

        string model_path = "";

        SessionOptions options;
        InferenceSession onnx_session;
        Tensor<float> input_tensor;
        Tensor<float> input_tensor_scale;
        List<NamedOnnxValue> input_container;

        IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;
        DisposableNamedOnnxValue[] results_onnxvalue;

        List<string> class_names;
        int num_class;

        StringBuilder sb = new StringBuilder();

        private void button1_Click(object sender, EventArgs e)
        {
            OpenFileDialog ofd = new OpenFileDialog();
            ofd.Filter = fileFilter;
            if (ofd.ShowDialog() != DialogResult.OK) return;

            pictureBox1.Image = null;
            pictureBox2.Image = null;
            textBox1.Text = "";

            image_path = ofd.FileName;
            pictureBox1.Image = new System.Drawing.Bitmap(image_path);
            image = new Mat(image_path);
        }

        private void Form1_Load(object sender, EventArgs e)
        {
            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            // 创建输出会话
            options = new SessionOptions();
            options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;
            options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行

            // 创建推理模型类,读取本地模型文件
            model_path = "model/ppyoloe_plus_crn_s_80e_coco_640x640.onnx";

            inpHeight = 640;
            inpWidth = 640;

            onnx_session = new InferenceSession(model_path, options);

            // 创建输入容器
            input_container = new List<NamedOnnxValue>();

            image_path = "test_img/bus.jpg";
            pictureBox1.Image = new Bitmap(image_path);

            class_names = new List<string>();
            StreamReader sr = new StreamReader("coco.names");
            string line;
            while ((line = sr.ReadLine()) != null)
            {
                class_names.Add(line);
            }
            num_class = class_names.Count();

        }

        private unsafe void button2_Click(object sender, EventArgs e)
        {
            if (image_path == "")
            {
                return;
            }
            textBox1.Text = "检测中,请稍等……";
            pictureBox2.Image = null;
            sb.Clear();
            System.Windows.Forms.Application.DoEvents();

            image = new Mat(image_path);
            //-----------------前处理--------------------------
            Mat dstimg = new Mat();
            float ratio = Math.Min(inpHeight * 1.0f / image.Rows, inpWidth * 1.0f / image.Cols);
            int neww = (int)(image.Cols * ratio);
            int newh = (int)(image.Rows * ratio);
            Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);
            Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(neww, newh));
            Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant, new Scalar(1));
            //Cv2.ImShow("dstimg", dstimg);

            int row = dstimg.Rows;
            int col = dstimg.Cols;
            float[] input_tensor_data = new float[1 * 3 * row * col];
            for (int c = 0; c < 3; c++)
            {
                for (int i = 0; i < row; i++)
                {
                    for (int j = 0; j < col; j++)
                    {
                        byte pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];
                        input_tensor_data[c * row * col + i * col + j] = (float)(pix / 255.0);
                    }
                }
            }

            input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });
            input_tensor_scale = new DenseTensor<float>(new float[] { 1, 1 }, new[] { 1, 2 });
            input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));
            input_container.Add(NamedOnnxValue.CreateFromTensor("scale_factor", input_tensor_scale));

            //-----------------推理--------------------------
            dt1 = DateTime.Now;
            result_infer = onnx_session.Run(input_container);//运行 Inference 并获取结果
            dt2 = DateTime.Now;

            //-----------------后处理--------------------------
            results_onnxvalue = result_infer.ToArray();
            int nout = results_onnxvalue[0].AsTensor<float>().Dimensions[1];
            float[] outs = results_onnxvalue[0].AsTensor<float>().ToArray();
            int[] box_num = results_onnxvalue[1].AsTensor<int>().ToArray();
            List<float> confidences = new List<float>();
            List<Rect> position_boxes = new List<Rect>();
            List<int> class_ids = new List<int>();
            Result result = new Result();

            for (int i = 0; i < box_num[0]; i++)
            {
                if (outs[0 + nout * i] > -1 && outs[1 + nout * i] > confThreshold)
                {
                    class_ids.Add((int)outs[0 + nout * i]);

                    confidences.Add(outs[1 + nout * i]);

                    float xmin = outs[2 + nout * i] / ratio;
                    float ymin = outs[3 + nout * i] / ratio;
                    float xmax = outs[4 + nout * i] / ratio;
                    float ymax = outs[5 + nout * i] / ratio;

                    Rect box = new Rect();
                    box.X = (int)xmin;
                    box.Y = (int)ymin;
                    box.Width = (int)(xmax - xmin);
                    box.Height = (int)(ymax - ymin);

                    position_boxes.Add(box);
                }
            }

            for (int i = 0; i < position_boxes.Count; i++)
            {
                int index = i;
                result.add(confidences[index], position_boxes[index], class_names[class_ids[index]]);
            }

            if (pictureBox2.Image != null)
            {
                pictureBox2.Image.Dispose();
            }

            sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
            sb.AppendLine("------------------------------");

            // 将识别结果绘制到图片上
            Mat result_image = image.Clone();
            for (int i = 0; i < result.length; i++)
            {
                Cv2.Rectangle(result_image, result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);

                Cv2.Rectangle(result_image, new OpenCvSharp.Point(result.rects[i].TopLeft.X - 1, result.rects[i].TopLeft.Y - 20),
                    new OpenCvSharp.Point(result.rects[i].BottomRight.X, result.rects[i].TopLeft.Y), new Scalar(0, 0, 255), -1);

                Cv2.PutText(result_image, result.classes[i] + "-" + result.scores[i].ToString("0.00"),
                    new OpenCvSharp.Point(result.rects[i].X, result.rects[i].Y - 4),
                    HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);

                sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})"
                    , result.classes[i]
                    , result.scores[i].ToString("0.00")
                    , result.rects[i].TopLeft.X
                    , result.rects[i].TopLeft.Y
                    , result.rects[i].BottomRight.X
                    , result.rects[i].BottomRight.Y
                    ));
            }

            textBox1.Text = sb.ToString();
            pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());

            result_image.Dispose();
            dstimg.Dispose();
            image.Dispose();

        }

        private void pictureBox2_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox2.Image);
        }

        private void pictureBox1_DoubleClick(object sender, EventArgs e)
        {
            Common.ShowNormalImg(pictureBox1.Image);
        }
    }
}

using Microsoft.ML.OnnxRuntime.Tensors;
using Microsoft.ML.OnnxRuntime;
using OpenCvSharp;
using System;
using System.Collections.Generic;
using System.Windows.Forms;
using System.Linq;
using System.Drawing;
using System.IO;
using System.Text;namespace Onnx_Demo
{public partial class frmMain : Form{public frmMain(){InitializeComponent();}string fileFilter = "*.*|*.bmp;*.jpg;*.jpeg;*.tiff;*.tiff;*.png";string image_path = "";DateTime dt1 = DateTime.Now;DateTime dt2 = DateTime.Now;float confThreshold = 0.5f;int inpWidth;int inpHeight;Mat image;string model_path = "";SessionOptions options;InferenceSession onnx_session;Tensor<float> input_tensor;Tensor<float> input_tensor_scale;List<NamedOnnxValue> input_container;IDisposableReadOnlyCollection<DisposableNamedOnnxValue> result_infer;DisposableNamedOnnxValue[] results_onnxvalue;List<string> class_names;int num_class;StringBuilder sb = new StringBuilder();private void button1_Click(object sender, EventArgs e){OpenFileDialog ofd = new OpenFileDialog();ofd.Filter = fileFilter;if (ofd.ShowDialog() != DialogResult.OK) return;pictureBox1.Image = null;pictureBox2.Image = null;textBox1.Text = "";image_path = ofd.FileName;pictureBox1.Image = new System.Drawing.Bitmap(image_path);image = new Mat(image_path);}private void Form1_Load(object sender, EventArgs e){// 创建输入容器input_container = new List<NamedOnnxValue>();// 创建输出会话options = new SessionOptions();options.LogSeverityLevel = OrtLoggingLevel.ORT_LOGGING_LEVEL_INFO;options.AppendExecutionProvider_CPU(0);// 设置为CPU上运行// 创建推理模型类,读取本地模型文件model_path = "model/ppyoloe_plus_crn_s_80e_coco_640x640.onnx";inpHeight = 640;inpWidth = 640;onnx_session = new InferenceSession(model_path, options);// 创建输入容器input_container = new List<NamedOnnxValue>();image_path = "test_img/bus.jpg";pictureBox1.Image = new Bitmap(image_path);class_names = new List<string>();StreamReader sr = new StreamReader("coco.names");string line;while ((line = sr.ReadLine()) != null){class_names.Add(line);}num_class = class_names.Count();}private unsafe void button2_Click(object sender, EventArgs e){if (image_path == ""){return;}textBox1.Text = "检测中,请稍等……";pictureBox2.Image = null;sb.Clear();System.Windows.Forms.Application.DoEvents();image = new Mat(image_path);//-----------------前处理--------------------------Mat dstimg = new Mat();float ratio = Math.Min(inpHeight * 1.0f / image.Rows, inpWidth * 1.0f / image.Cols);int neww = (int)(image.Cols * ratio);int newh = (int)(image.Rows * ratio);Cv2.CvtColor(image, dstimg, ColorConversionCodes.BGR2RGB);Cv2.Resize(dstimg, dstimg, new OpenCvSharp.Size(neww, newh));Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant, new Scalar(1));//Cv2.ImShow("dstimg", dstimg);int row = dstimg.Rows;int col = dstimg.Cols;float[] input_tensor_data = new float[1 * 3 * row * col];for (int c = 0; c < 3; c++){for (int i = 0; i < row; i++){for (int j = 0; j < col; j++){byte pix = ((byte*)(dstimg.Ptr(i).ToPointer()))[j * 3 + c];input_tensor_data[c * row * col + i * col + j] = (float)(pix / 255.0);}}}input_tensor = new DenseTensor<float>(input_tensor_data, new[] { 1, 3, inpHeight, inpWidth });input_tensor_scale = new DenseTensor<float>(new float[] { 1, 1 }, new[] { 1, 2 });input_container.Add(NamedOnnxValue.CreateFromTensor("image", input_tensor));input_container.Add(NamedOnnxValue.CreateFromTensor("scale_factor", input_tensor_scale));//-----------------推理--------------------------dt1 = DateTime.Now;result_infer = onnx_session.Run(input_container);//运行 Inference 并获取结果dt2 = DateTime.Now;//-----------------后处理--------------------------results_onnxvalue = result_infer.ToArray();int nout = results_onnxvalue[0].AsTensor<float>().Dimensions[1];float[] outs = results_onnxvalue[0].AsTensor<float>().ToArray();int[] box_num = results_onnxvalue[1].AsTensor<int>().ToArray();List<float> confidences = new List<float>();List<Rect> position_boxes = new List<Rect>();List<int> class_ids = new List<int>();Result result = new Result();for (int i = 0; i < box_num[0]; i++){if (outs[0 + nout * i] > -1 && outs[1 + nout * i] > confThreshold){class_ids.Add((int)outs[0 + nout * i]);confidences.Add(outs[1 + nout * i]);float xmin = outs[2 + nout * i] / ratio;float ymin = outs[3 + nout * i] / ratio;float xmax = outs[4 + nout * i] / ratio;float ymax = outs[5 + nout * i] / ratio;Rect box = new Rect();box.X = (int)xmin;box.Y = (int)ymin;box.Width = (int)(xmax - xmin);box.Height = (int)(ymax - ymin);position_boxes.Add(box);}}for (int i = 0; i < position_boxes.Count; i++){int index = i;result.add(confidences[index], position_boxes[index], class_names[class_ids[index]]);}if (pictureBox2.Image != null){pictureBox2.Image.Dispose();}sb.AppendLine("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");sb.AppendLine("------------------------------");// 将识别结果绘制到图片上Mat result_image = image.Clone();for (int i = 0; i < result.length; i++){Cv2.Rectangle(result_image, result.rects[i], new Scalar(0, 0, 255), 2, LineTypes.Link8);Cv2.Rectangle(result_image, new OpenCvSharp.Point(result.rects[i].TopLeft.X - 1, result.rects[i].TopLeft.Y - 20),new OpenCvSharp.Point(result.rects[i].BottomRight.X, result.rects[i].TopLeft.Y), new Scalar(0, 0, 255), -1);Cv2.PutText(result_image, result.classes[i] + "-" + result.scores[i].ToString("0.00"),new OpenCvSharp.Point(result.rects[i].X, result.rects[i].Y - 4),HersheyFonts.HersheySimplex, 0.6, new Scalar(0, 0, 0), 1);sb.AppendLine(string.Format("{0}:{1},({2},{3},{4},{5})", result.classes[i], result.scores[i].ToString("0.00"), result.rects[i].TopLeft.X, result.rects[i].TopLeft.Y, result.rects[i].BottomRight.X, result.rects[i].BottomRight.Y));}textBox1.Text = sb.ToString();pictureBox2.Image = new System.Drawing.Bitmap(result_image.ToMemoryStream());result_image.Dispose();dstimg.Dispose();image.Dispose();}private void pictureBox2_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox2.Image);}private void pictureBox1_DoubleClick(object sender, EventArgs e){Common.ShowNormalImg(pictureBox1.Image);}}
}

下载

源码下载

这篇关于C# Onnx 百度飞桨开源PP-YOLOE-Plus目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466678

相关文章

C# 比较两个list 之间元素差异的常用方法

《C#比较两个list之间元素差异的常用方法》:本文主要介绍C#比较两个list之间元素差异,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录1. 使用Except方法2. 使用Except的逆操作3. 使用LINQ的Join,GroupJoin

C++ 检测文件大小和文件传输的方法示例详解

《C++检测文件大小和文件传输的方法示例详解》文章介绍了在C/C++中获取文件大小的三种方法,推荐使用stat()函数,并详细说明了如何设计一次性发送压缩包的结构体及传输流程,包含CRC校验和自动解... 目录检测文件的大小✅ 方法一:使用 stat() 函数(推荐)✅ 用法示例:✅ 方法二:使用 fsee

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

MyBatis Plus 中 update_time 字段自动填充失效的原因分析及解决方案(最新整理)

《MyBatisPlus中update_time字段自动填充失效的原因分析及解决方案(最新整理)》在使用MyBatisPlus时,通常我们会在数据库表中设置create_time和update... 目录前言一、问题现象二、原因分析三、总结:常见原因与解决方法对照表四、推荐写法前言在使用 MyBATis

Mybatis Plus Join使用方法示例详解

《MybatisPlusJoin使用方法示例详解》:本文主要介绍MybatisPlusJoin使用方法示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,... 目录1、pom文件2、yaml配置文件3、分页插件4、示例代码:5、测试代码6、和PageHelper结合6

C#如何去掉文件夹或文件名非法字符

《C#如何去掉文件夹或文件名非法字符》:本文主要介绍C#如何去掉文件夹或文件名非法字符的问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#去掉文件夹或文件名非法字符net类库提供了非法字符的数组这里还有个小窍门总结C#去掉文件夹或文件名非法字符实现有输入字

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

Java调用C#动态库的三种方法详解

《Java调用C#动态库的三种方法详解》在这个多语言编程的时代,Java和C#就像两位才华横溢的舞者,各自在不同的舞台上展现着独特的魅力,然而,当它们携手合作时,又会碰撞出怎样绚丽的火花呢?今天,我们... 目录方法1:C++/CLI搭建桥梁——Java ↔ C# 的“翻译官”步骤1:创建C#类库(.NET

C#代码实现解析WTGPS和BD数据

《C#代码实现解析WTGPS和BD数据》在现代的导航与定位应用中,准确解析GPS和北斗(BD)等卫星定位数据至关重要,本文将使用C#语言实现解析WTGPS和BD数据,需要的可以了解下... 目录一、代码结构概览1. 核心解析方法2. 位置信息解析3. 经纬度转换方法4. 日期和时间戳解析5. 辅助方法二、L