本文主要是介绍台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numerical differentiation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numeric differentiation
复习:diff()函数用来计算vector前后 entry的差异
数值微分继续
various step size 不同Δx大小
不同Δx大小,看近似值和真正函数值之间的差异大不大。
看题目,用不同的h值计算函数f(x)=sin(x)的导数,画出图形
The derivatives(导数) of f(x)=sin(x) calculated using various h values
codes:
g=colormap(lines);hold on;
for i=1:4%为了给出不同的h值x=0:power(10,-i):pi;%power(10,-i)表示10的-i次方
y=sin(x);
m=diff(y)./diff(x);%算是计算导数
plot(x(1:end-1),m,'color',g(i,:));%x(1:end-1)因为diff差值,vector维度少一
end
hold off;set(gca,'xlim',[0,pi/2]);%设置x轴横坐标范围
set(gca,'ylim',[0,1.2]);
set(gca,'xtick',0:pi/4:pi/2);%设置x轴坐标间隔
xticklabels({'0','\pi/4','\pi/2'});%显示pi
set(gca,'fontsize',18);%设置字体
h=legend('h=0.1','h=0.01','h=0.001','h=0.0001');%设置图像名称
set(h,'fontname','Times New Roman');
box on;%右上边框显示
代码的解释
colormap回顾:colormap输入参数的用法
plot(x(1:end-1),m,‘color’,g(i,:));的解释:
%x(1:end-1)因为diff差值,vector维度少一,所以需要end-1。这里color用的是g(i,:),由于g是colormap中的lines颜色图,颜色图是一个矩阵matrix,这里应该是二维的,g(i,:)取的是这个矩阵的第i行元素,我的理解是一个行向量,然后赋值给了color显示出来。
运行结果:
作业题:
给定一个函数,用不同的h值计算近似导数
我的代码:
g=colormap(lines);%颜色
hold on;
%先来确定x的范围:
for i=1:3x=0:power(10,-i):2*pi;%不同的h 步长y=exp(-x).*sin(x.^2/2);%函数表达式需要点乘m=diff(y)./diff(x);%差分,求导plot(x(1:end-1),m,'color',g(i,:));
end
hold off;%下面是一些设置
box on;
set(gca,'fontsize',18);
set(gca,'xlim',[0,2*pi]);%x轴范围
set(gca,'ylim',[-0.3,0.3]);%y轴范围
set(gca,'xtick',0:pi/2:2*pi);%刻度
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'});%显示刻度
legend('h=0.1','h=0.01','h=0.001');%函数标头
有个问题:这个函数表达式是两个函数相乘的形式,中间是用*还是用.*点乘?
实验结果:
y=exp(-x).*sin(x^2/2);(错误)
计算这个表达式正确的形式
y=exp(-x).*sin(x.^2/2);
我的练习结果:
下一个题目是
二次和三次微分second and third derivatives
the second derivative f’’ and third derivative f’’’ can be obtained using similar approaches
举例子:
例程代码:
x=-2:0.005:2;
y=x.^3;
m=diff(y)./diff(x);%一次微分
m2=diff(m)./diff(x(1:end-1));%二次微分plot(x,y,x(1:end-1),m,x(1:end-2),m2);%作图
xlabel('x','fontsize',18);
ylabel('y','fontsize',18);
legend('f(x)=x^3','f''(x)','f'''(x)',4);%函数标头
set(gca,'fontsize',18);
【注意】每做一次微分,entry就少一个。
运行结果:
总结一下:
数值微分主要使用diff()函数。需要注意的是做一次微分,entry减少一,就是vector维度少一个。
一次微分:m=diff(y)./diff(x);%一次微分
二次微分:m2=diff(m)./diff(x(1:end-1));%二次微分
这篇关于台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numerical differentiation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!