台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numerical differentiation

本文主要是介绍台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numerical differentiation,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numeric differentiation

复习:diff()函数用来计算vector前后 entry的差异

数值微分继续

various step size 不同Δx大小

不同Δx大小,看近似值和真正函数值之间的差异大不大。

看题目,用不同的h值计算函数f(x)=sin(x)的导数,画出图形

The derivatives(导数) of f(x)=sin(x) calculated using various h values

codes:

g=colormap(lines);hold on;
for i=1:4%为了给出不同的h值x=0:power(10,-i):pi;%power(10,-i)表示10的-i次方
y=sin(x);
m=diff(y)./diff(x);%算是计算导数
plot(x(1:end-1),m,'color',g(i,:));%x(1:end-1)因为diff差值,vector维度少一
end
hold off;set(gca,'xlim',[0,pi/2]);%设置x轴横坐标范围
set(gca,'ylim',[0,1.2]);
set(gca,'xtick',0:pi/4:pi/2);%设置x轴坐标间隔
xticklabels({'0','\pi/4','\pi/2'});%显示pi
set(gca,'fontsize',18);%设置字体
h=legend('h=0.1','h=0.01','h=0.001','h=0.0001');%设置图像名称
set(h,'fontname','Times New Roman');
box on;%右上边框显示

代码的解释
colormap回顾:colormap输入参数的用法
在这里插入图片描述在这里插入图片描述

plot(x(1:end-1),m,‘color’,g(i,:));的解释:
%x(1:end-1)因为diff差值,vector维度少一,所以需要end-1。这里color用的是g(i,:),由于g是colormap中的lines颜色图,颜色图是一个矩阵matrix,这里应该是二维的,g(i,:)取的是这个矩阵的第i行元素,我的理解是一个行向量,然后赋值给了color显示出来。

运行结果:

在这里插入图片描述
作业题:
给定一个函数,用不同的h值计算近似导数

在这里插入图片描述
我的代码:

g=colormap(lines);%颜色
hold on;
%先来确定x的范围:
for i=1:3x=0:power(10,-i):2*pi;%不同的h 步长y=exp(-x).*sin(x.^2/2);%函数表达式需要点乘m=diff(y)./diff(x);%差分,求导plot(x(1:end-1),m,'color',g(i,:));
end
hold off;%下面是一些设置
box on;
set(gca,'fontsize',18);
set(gca,'xlim',[0,2*pi]);%x轴范围
set(gca,'ylim',[-0.3,0.3]);%y轴范围
set(gca,'xtick',0:pi/2:2*pi);%刻度
xticklabels({'0','\pi/2','\pi','3\pi/2','2\pi'});%显示刻度
legend('h=0.1','h=0.01','h=0.001');%函数标头

有个问题:这个函数表达式是两个函数相乘的形式,中间是用*还是用.*点乘?
实验结果:
y=exp(-x).*sin(x^2/2);(错误)
在这里插入图片描述
计算这个表达式正确的形式

y=exp(-x).*sin(x.^2/2);

我的练习结果:

在这里插入图片描述
下一个题目是

二次和三次微分second and third derivatives

the second derivative f’’ and third derivative f’’’ can be obtained using similar approaches

举例子:
在这里插入图片描述

例程代码:

x=-2:0.005:2;
y=x.^3;
m=diff(y)./diff(x);%一次微分
m2=diff(m)./diff(x(1:end-1));%二次微分plot(x,y,x(1:end-1),m,x(1:end-2),m2);%作图
xlabel('x','fontsize',18);
ylabel('y','fontsize',18);
legend('f(x)=x^3','f''(x)','f'''(x)',4);%函数标头 
set(gca,'fontsize',18);

【注意】每做一次微分,entry就少一个。

运行结果:
在这里插入图片描述

总结一下:
数值微分主要使用diff()函数。需要注意的是做一次微分,entry减少一,就是vector维度少一个。
一次微分:m=diff(y)./diff(x);%一次微分
二次微分:m2=diff(m)./diff(x(1:end-1));%二次微分

这篇关于台湾国立大学郭彦甫Matlab教程笔记(16) 数值微分 numerical differentiation的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/466071

相关文章

Elasticsearch 在 Java 中的使用教程

《Elasticsearch在Java中的使用教程》Elasticsearch是一个分布式搜索和分析引擎,基于ApacheLucene构建,能够实现实时数据的存储、搜索、和分析,它广泛应用于全文... 目录1. Elasticsearch 简介2. 环境准备2.1 安装 Elasticsearch2.2 J

Linux系统中卸载与安装JDK的详细教程

《Linux系统中卸载与安装JDK的详细教程》本文详细介绍了如何在Linux系统中通过Xshell和Xftp工具连接与传输文件,然后进行JDK的安装与卸载,安装步骤包括连接Linux、传输JDK安装包... 目录1、卸载1.1 linux删除自带的JDK1.2 Linux上卸载自己安装的JDK2、安装2.1

Linux卸载自带jdk并安装新jdk版本的图文教程

《Linux卸载自带jdk并安装新jdk版本的图文教程》在Linux系统中,有时需要卸载预装的OpenJDK并安装特定版本的JDK,例如JDK1.8,所以本文给大家详细介绍了Linux卸载自带jdk并... 目录Ⅰ、卸载自带jdkⅡ、安装新版jdkⅠ、卸载自带jdk1、输入命令查看旧jdkrpm -qa

Java使用Curator进行ZooKeeper操作的详细教程

《Java使用Curator进行ZooKeeper操作的详细教程》ApacheCurator是一个基于ZooKeeper的Java客户端库,它极大地简化了使用ZooKeeper的开发工作,在分布式系统... 目录1、简述2、核心功能2.1 CuratorFramework2.2 Recipes3、示例实践3

springboot简单集成Security配置的教程

《springboot简单集成Security配置的教程》:本文主要介绍springboot简单集成Security配置的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录集成Security安全框架引入依赖编写配置类WebSecurityConfig(自定义资源权限规则

MySQL Workbench 安装教程(保姆级)

《MySQLWorkbench安装教程(保姆级)》MySQLWorkbench是一款强大的数据库设计和管理工具,本文主要介绍了MySQLWorkbench安装教程,文中通过图文介绍的非常详细,对大... 目录前言:详细步骤:一、检查安装的数据库版本二、在官网下载对应的mysql Workbench版本,要是

通过Docker Compose部署MySQL的详细教程

《通过DockerCompose部署MySQL的详细教程》DockerCompose作为Docker官方的容器编排工具,为MySQL数据库部署带来了显著优势,下面小编就来为大家详细介绍一... 目录一、docker Compose 部署 mysql 的优势二、环境准备与基础配置2.1 项目目录结构2.2 基

Linux安装MySQL的教程

《Linux安装MySQL的教程》:本文主要介绍Linux安装MySQL的教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux安装mysql1.Mysql官网2.我的存放路径3.解压mysql文件到当前目录4.重命名一下5.创建mysql用户组和用户并修

最新Spring Security实战教程之Spring Security安全框架指南

《最新SpringSecurity实战教程之SpringSecurity安全框架指南》SpringSecurity是Spring生态系统中的核心组件,提供认证、授权和防护机制,以保护应用免受各种安... 目录前言什么是Spring Security?同类框架对比Spring Security典型应用场景传统

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言