本文主要是介绍OTSU算法及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
文章目录
- 原理
- 实现和验证
- 分析和优化
原理
OTSU算法是大津展之提出的阈值分割方法,又叫最大类间方差法。OTSU并不是一个英文缩写,而是日语假名,是其提出者的姓氏“大津”。
假设存在阈值 T T T可以将图像分为两部分,记二者均值为 m 1 , m 2 m_1, m_2 m1,m2,图像总均值为 m m m,像素被分入这两部分的比例分别为 p 1 , p 2 p_1, p_2 p1,p2。从而
p 1 + p 2 = 1 p 1 m 1 + p 2 m 2 = m \begin{aligned} p_1+p_2&=1\\ p_1m_1+p_2m_2&=m\\ \end{aligned} p1+p2p1m1+p2m2=1=m
则类间方差可表示为
σ 2 = p 1 ( m 1 − m ) 2 + p 2 ( m 2 − m ) 2 = p 1 m 1 2 + p 2 m 2 2 − m 2 \begin{aligned} \sigma^2&=p_1(m_1-m)^2+p_2(m_2-m)^2\\ &=p_1m_1^2+p_2m_2^2-m^2 \end{aligned} σ2=p1(m1−m)2+p2(m2−m)2=p1m12+p2m22−m2
实现和验证
由于OTSU算法的逻辑和公式都非常清晰,所以实现起来也及其方便
import numpy as np
import matplotlib.pyplot as plt# 计算类间方差
def getVar(img, th):slct = img>thp1 = np.sum(slct)/img.sizeif p1 in [0, 1]:return 0p2 = 1-p1m1 = np.mean(img[slct])m2 = np.mean(img[~slct])m = p1*m1+p2*m2return p1*m1**2+p2*m2**2-m**2def otsu(img):vs = [getVar(img, th) for th in range(256)]return np.argmax(vs)
其中,getVar用于计算类间方差,后面的otsu则返回分割阈值。下面创建函数用于测试otsu算法
def drawOne(fig, index, img):fig.add_subplot(index)plt.imshow(img, cmap="gray")plt.axis('off')def test():img = plt.imread(r"D:\Code\NotePL\python\lena.jpg").astype(float)img = np.mean(img, axis=2)th = otsu(img)print(th)fig = plt.figure(figsize=(8,3))drawOne(fig, 131, img)drawOne(fig, 132, img>th)drawOne(fig, 133, img<=th)plt.tight_layout()plt.show()
效果如下
分析和优化
由于图像的像素值是八位整型,所以迭代256次就可以得到所有的类间方差。
img = plt.imread(r"D:\Code\NotePL\python\lena.jpg").astype(float)
img = np.mean(img, axis=2)
vs = [getVar(img, th) for th in range(256)]
print(np.argmax(vs)) # 121
plt.plot(vs)
plt.show()
类间方差分布如下,当阈值是121时,得到最大类间方差。
对于精度更高的16位图像,或者其他非图像的数值,遍历的方案效率太低了,为此可进行做一个步长二分的爬山算法,代码如下,最终得到的结果位121.7,由于在阈值分割时采用的是大于号,所以效果与121相同。
def climb(img, step, st=0, err=0.1):vSt = getVar(img, st)while abs(step)>err:ed = st+stepvEd = getVar(img, ed)if vEd < vSt:step = -step/2st, vSt = ed, vEdreturn edclimb(img, 40)
# 121.71875
这篇关于OTSU算法及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!