OTSU算法及其Python实现

2023-12-07 11:20
文章标签 python 算法 实现 otsu

本文主要是介绍OTSU算法及其Python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 原理
    • 实现和验证
    • 分析和优化

原理

OTSU算法是大津展之提出的阈值分割方法,又叫最大类间方差法。OTSU并不是一个英文缩写,而是日语假名,是其提出者的姓氏“大津”。

假设存在阈值 T T T可以将图像分为两部分,记二者均值为 m 1 , m 2 m_1, m_2 m1,m2,图像总均值为 m m m,像素被分入这两部分的比例分别为 p 1 , p 2 p_1, p_2 p1,p2。从而

p 1 + p 2 = 1 p 1 m 1 + p 2 m 2 = m \begin{aligned} p_1+p_2&=1\\ p_1m_1+p_2m_2&=m\\ \end{aligned} p1+p2p1m1+p2m2=1=m

则类间方差可表示为

σ 2 = p 1 ( m 1 − m ) 2 + p 2 ( m 2 − m ) 2 = p 1 m 1 2 + p 2 m 2 2 − m 2 \begin{aligned} \sigma^2&=p_1(m_1-m)^2+p_2(m_2-m)^2\\ &=p_1m_1^2+p_2m_2^2-m^2 \end{aligned} σ2=p1(m1m)2+p2(m2m)2=p1m12+p2m22m2

实现和验证

由于OTSU算法的逻辑和公式都非常清晰,所以实现起来也及其方便

import numpy as np
import matplotlib.pyplot as plt# 计算类间方差
def getVar(img, th):slct = img>thp1 = np.sum(slct)/img.sizeif p1 in [0, 1]:return 0p2 = 1-p1m1 = np.mean(img[slct])m2 = np.mean(img[~slct])m = p1*m1+p2*m2return p1*m1**2+p2*m2**2-m**2def otsu(img):vs = [getVar(img, th) for th in range(256)]return np.argmax(vs)

其中,getVar用于计算类间方差,后面的otsu则返回分割阈值。下面创建函数用于测试otsu算法

def drawOne(fig, index, img):fig.add_subplot(index)plt.imshow(img, cmap="gray")plt.axis('off')def test():img = plt.imread(r"D:\Code\NotePL\python\lena.jpg").astype(float)img = np.mean(img, axis=2)th = otsu(img)print(th)fig = plt.figure(figsize=(8,3))drawOne(fig, 131, img)drawOne(fig, 132, img>th)drawOne(fig, 133, img<=th)plt.tight_layout()plt.show()

效果如下

在这里插入图片描述

分析和优化

由于图像的像素值是八位整型,所以迭代256次就可以得到所有的类间方差。

img = plt.imread(r"D:\Code\NotePL\python\lena.jpg").astype(float)
img = np.mean(img, axis=2)
vs = [getVar(img, th) for th in range(256)]
print(np.argmax(vs))    # 121
plt.plot(vs)
plt.show()

类间方差分布如下,当阈值是121时,得到最大类间方差。

在这里插入图片描述

对于精度更高的16位图像,或者其他非图像的数值,遍历的方案效率太低了,为此可进行做一个步长二分的爬山算法,代码如下,最终得到的结果位121.7,由于在阈值分割时采用的是大于号,所以效果与121相同。

def climb(img, step, st=0, err=0.1):vSt = getVar(img, st)while abs(step)>err:ed = st+stepvEd = getVar(img, ed)if vEd < vSt:step = -step/2st, vSt = ed, vEdreturn edclimb(img, 40)
# 121.71875

这篇关于OTSU算法及其Python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465667

相关文章

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)