用Python计算合肥地铁乘车最优乘车路线:暴力方式

2023-12-07 10:50

本文主要是介绍用Python计算合肥地铁乘车最优乘车路线:暴力方式,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

假设地铁平均速度60km/h,平均换乘耗时5分钟,列车各站停留时间30秒。已知乘车站及下车站,求最优乘车路线。

也就是最少换乘路线与最短路径之间的选择

首先需要准备的数据:

1.合肥1-3号线站点信息,

根据站名获取纬度,进而获取站点距离

2,构建紧邻图graph。(可以向高德索取数据并整理)

def get_location(keyword,city):#获得经纬度keyword = keyword+"(地铁站)"user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'headers = {'User-Agent': user_agent}url='http://restapi.amap.com/v3/place/text?key='+keynum+'&keywords='+keyword+'&types=&city='+city+'&children=1&offset=1&page=1&extensions=all'data = requests.get(url, headers=headers)data.encoding='utf-8'data=json.loads(data.text)result=data['pois'][0]['location'].split(',')return result[0],result[1]def compute_distance(longitude1,latitude1,longitude2,latitude2):#计算两个地铁站的距离user_agent='Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_8; en-us) AppleWebKit/534.50 (KHTML, like Gecko) Version/5.1 Safari/534.50'headers = {'User-Agent': user_agent}#url='http://restapi.amap.com/v3/distance?key='+keynum+'&origins='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&type=3'两点距离url = 'http://restapi.amap.com/v3/direction/transit/integrated?key='+keynum+'&origin='+str(longitude1)+','+str(latitude1)+'&destination='+str(longitude2)+','+str(latitude2)+'&city=合肥&cityd=合肥&strategy=0&nightflag=0&date=2014-3-19&time=22:34'data=requests.get(url,headers=headers)data.encoding='utf-8'data=json.loads(data.text)result=data['route']['distance']return resultdef get_graph():print('正在创建pickle文件...')data=pd.read_excel('./subway.xlsx')#创建点之间的距离graph=defaultdict(dict)for i in range(data.shape[0]):site1=data.iloc[i]['line']if i<data.shape[0]-1:#print(site2)site2=data.iloc[i+1]['line']#如果是共一条线if site1==site2:longitude1,latitude1=data.iloc[i]['longitude'],data.iloc[i]['latitude']longitude2,latitude2=data.iloc[i+1]['longitude'],data.iloc[i+1]['latitude']name1=data.iloc[i]['name']name2=data.iloc[i+1]['name']distance=compute_distance(longitude1,latitude1,longitude2,latitude2)graph[name1][name2]={'line':site1,'distance':distance}graph[name2][name1]={'line':site1,'distance':distance}output=open('graph.pkl','wb')pickle.dump(graph,output)

暴力的解决问题:

1,遍历出所有路径,以及换乘次数,换乘线路,路径距离

2,找到最短路径(也可能是最短距离),和最少换乘路径进行比较

import pickledef find_allPath(graph,start,end,path=[]):path = path +[start]if start == end:return [path]#print(path)paths = [] #存储所有路径    for node in graph[start]:if node not in path:newpaths = find_allPath(graph,node,end,path) for newpath in newpaths:paths.append(newpath)return pathsdef compare_allPath(start,end,path=[]):paths =find_allPath(graph,start,end,path=[])line_num=[]tr_=[]distances=[]for path in paths:line,distance,tr = [],[],[]for i in range(len(path)-1):li=graph[path[i]][path[i+1]]['line']if len(line)==0:line.append(str(li))elif str(li) != line[-1]:line.append(str(li))tr.append(path[i])distance.append(graph[path[i]][path[i+1]]['distance'])line_num.append(line)tr_.append(tr)distances.append(sum([int(d) for d in distance]))tr_num = [len(i) for i in tr_]if distances.index(min(distances)) != tr_num.index(min(tr_num)):#计算最短距离与最少换成的耗时差异#最短路径与最少换乘的距离差距path_dis_diff = distances[distances.index(min(distances))]-distances[tr_num.index(min(tr_num))]#过站数量差异:station_diff = len(path[distances.index(min(distances))])-len(path[tr_num.index(min(tr_num))])#最短路径与最少换乘的换乘距离差距path_tr_num_diff = tr_num[distances.index(min(distances))]-tr_num[tr_num.index(min(tr_num))]#如果距离耗时与换乘时间做比较:假设地铁速度60km/h,换乘耗时5分钟if abs(station_diff)*0.5+abs(path_dis_diff)/1000<path_tr_num_diff*5:path,linen,tr=paths[tr_num.index(min(tr_num))],line_num[tr_num.index(min(tr_num))],tr_[tr_num.index(min(tr_num))]else:path,linen,tr=paths[distances.index(min(distances))],line_num[distances.index(min(distances))],tr_[distances.index(min(distances))]else:path,linen,tr=paths[distances.index(min(distances))],line_num[distances.index(min(distances))],tr_[distances.index(min(distances))]if len(line)>1:print('需要搭乘{}号地铁'.format(','.join(list(linen))))print('换乘站是{}'.format(','.join(tr)))print('路线规划为:','-->'.join(path))else:print('需要搭乘{}号地铁'.format(','.join(list(linen))))print('路线规划为:','-->'.join(path)) return path,linen,trif __name__ == '__main__':global graphfile=open('graph.pkl','rb')graph=pickle.load(file)#compare_allPath('职教城','幸福坝')#compare_allPath('洪岗','包公园')compare_allPath('职教城','幸福坝')

 

该方法是最LOW的方法,下篇将用dijkstra解决最短路径问题

这篇关于用Python计算合肥地铁乘车最优乘车路线:暴力方式的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/465580

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

Python xmltodict实现简化XML数据处理

《Pythonxmltodict实现简化XML数据处理》Python社区为提供了xmltodict库,它专为简化XML与Python数据结构的转换而设计,本文主要来为大家介绍一下如何使用xmltod... 目录一、引言二、XMLtodict介绍设计理念适用场景三、功能参数与属性1、parse函数2、unpa

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3