【教3妹学编程-算法题】最小化旅行的价格总和

2023-12-06 17:52

本文主要是介绍【教3妹学编程-算法题】最小化旅行的价格总和,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一夜暴富

3妹:2哥2哥,你有没有看到新闻, 有人中了2.2亿彩票大奖!
2哥 : 看到了,2.2亿啊, 一生一世也花不完。
3妹:为啥我就中不了呢,不开心呀不开心。
2哥 : 得了吧,你又不买彩票,还是脚踏实地的好~
3妹:小富靠勤,中富靠德,大富靠命, 可能是我命不好。
2哥 : 话说如果你有了钱,想要干嘛呀?
3妹:旅行,到处去旅行
2哥:就知道会有这一项, 我今天看到一个关于旅行的题目,让我也来考考你吧~

考考你

题目:

现有一棵无向、无根的树,树中有 n 个节点,按从 0 到 n - 1 编号。给你一个整数 n 和一个长度为 n - 1 的二维整数数组 edges ,其中 edges[i] = [ai, bi] 表示树中节点 ai 和 bi 之间存在一条边。

每个节点都关联一个价格。给你一个整数数组 price ,其中 price[i] 是第 i 个节点的价格。

给定路径的 价格总和 是该路径上所有节点的价格之和。

另给你一个二维整数数组 trips ,其中 trips[i] = [starti, endi] 表示您从节点 starti 开始第 i 次旅行,并通过任何你喜欢的路径前往节点 endi 。

在执行第一次旅行之前,你可以选择一些 非相邻节点 并将价格减半。

返回执行所有旅行的最小价格总和。

示例 1:
image.png

输入:n = 4, edges = [[0,1],[1,2],[1,3]], price = [2,2,10,6], trips = [[0,3],[2,1],[2,3]]
输出:23
解释:
上图表示将节点 2 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 、2 和 3 并使其价格减半后的树。
第 1 次旅行,选择路径 [0,1,3] 。路径的价格总和为 1 + 2 + 3 = 6 。
第 2 次旅行,选择路径 [2,1] 。路径的价格总和为 2 + 5 = 7 。
第 3 次旅行,选择路径 [2,1,3] 。路径的价格总和为 5 + 2 + 3 = 10 。
所有旅行的价格总和为 6 + 7 + 10 = 23 。可以证明,23 是可以实现的最小答案。

示例 2:
image.png

输入:n = 2, edges = [[0,1]], price = [2,2], trips = [[0,0]]
输出:1
解释:
上图表示将节点 0 视为根之后的树结构。第一个图表示初始树,第二个图表示选择节点 0 并使其价格减半后的树。
第 1 次旅行,选择路径 [0] 。路径的价格总和为 1 。
所有旅行的价格总和为 1 。可以证明,1 是可以实现的最小答案。

提示:

1 <= n <= 50
edges.length == n - 1
0 <= ai, bi <= n - 1
edges 表示一棵有效的树
price.length == n
price[i] 是一个偶数
1 <= price[i] <= 1000
1 <= trips.length <= 100
0 <= starti, endi <= n - 1

思路:

思考

深度优先搜索 + 动态规划,
为了使旅行的价格总和最小,那么每次旅行的路径必定是最短路径。根据题意,每次旅行 trips[i] 都是独立的,因此我们可以依次开始旅行 trips[i],并且用数组 count记录节点在旅行中被经过的次数。记旅行 trips[i]的起点和终点分别为 starti和 endi,那么我们以 starti为树的根节点,对树进行深度优先搜索,对于如果节点 node\textit{node}node 的子树(包含它本身)包含节点 endi ,那么我们将 count[node] 加一。

java代码:

class Solution {private List<Integer>[] g, qs;private int[] diff, father, color, price;public int minimumTotalPrice(int n, int[][] edges, int[] price, int[][] trips) {g = new ArrayList[n];Arrays.setAll(g, e -> new ArrayList<>());for (var e : edges) {int x = e[0], y = e[1];g[x].add(y);g[y].add(x); // 建树}qs = new ArrayList[n];Arrays.setAll(qs, e -> new ArrayList<>());for (var t : trips) {int x = t[0], y = t[1];qs[x].add(y); // 路径端点分组if (x != y) qs[y].add(x);}pa = new int[n];for (int i = 1; i < n; ++i)pa[i] = i;diff = new int[n];father = new int[n];color = new int[n];tarjan(0, -1);this.price = price;var p = dfs(0, -1);return Math.min(p[0], p[1]);}// 并查集模板private int[] pa;private int find(int x) {if (pa[x] != x)pa[x] = find(pa[x]);return pa[x];}private void tarjan(int x, int fa) {father[x] = fa;color[x] = 1; // 递归中for (int y : g[x])if (color[y] == 0) { // 未递归tarjan(y, x);pa[y] = x; // 相当于把 y 的子树节点全部 merge 到 x}for (int y : qs[x])// color[y] == 2 意味着 y 所在子树已经遍历完// 也就意味着 y 已经 merge 到它和 x 的 lca 上了if (y == x || color[y] == 2) { // 从 y 向上到达 lca 然后拐弯向下到达 x++diff[x];++diff[y];int lca = find(y);--diff[lca];int f = father[lca];if (f >= 0) {--diff[f];}}color[x] = 2; // 递归结束}private int[] dfs(int x, int fa) {int notHalve = 0, halve = 0, cnt = diff[x];for (int y : g[x])if (y != fa) {var p = dfs(y, x); // 计算 y 不变/减半的最小价值总和notHalve += Math.min(p[0], p[1]); // x 不变,那么 y 可以不变,可以减半,取这两种情况的最小值halve += p[0]; // x 减半,那么 y 只能不变cnt += p[2]; // 自底向上累加差分值}notHalve += price[x] * cnt; // x 不变halve += price[x] * cnt / 2; // x 减半return new int[]{notHalve, halve, cnt};}
}

这篇关于【教3妹学编程-算法题】最小化旅行的价格总和的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/462745

相关文章

C#反射编程之GetConstructor()方法解读

《C#反射编程之GetConstructor()方法解读》C#中Type类的GetConstructor()方法用于获取指定类型的构造函数,该方法有多个重载版本,可以根据不同的参数获取不同特性的构造函... 目录C# GetConstructor()方法有4个重载以GetConstructor(Type[]

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

Linux 网络编程 --- 应用层

一、自定义协议和序列化反序列化 代码: 序列化反序列化实现网络版本计算器 二、HTTP协议 1、谈两个简单的预备知识 https://www.baidu.com/ --- 域名 --- 域名解析 --- IP地址 http的端口号为80端口,https的端口号为443 url为统一资源定位符。CSDNhttps://mp.csdn.net/mp_blog/creation/editor

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费