WordPiece词表的创建

2023-12-06 05:45
文章标签 创建 词表 wordpiece

本文主要是介绍WordPiece词表的创建,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 一、简单介绍
    • 二、步骤流程
      • 2.1 预处理
      • 2.2 计数
      • 2.3 分割
      • 2.4 添加subword
    • 三、代码实现

本篇内容主要介绍如何根据提供的文本内容创建 WordPiece vocabulary,代码来自谷歌;

一、简单介绍

wordpiece的目的是:通过考虑单词内部构造,充分利用subwords的优势,在把长word转化为短word提高文字的灵活性以及提高word转化的效率这两处之间取得一个良好的平衡;

前者会增加词表大小,后者会减少词表大小

二、步骤流程

2.1 预处理

在读取所有的文本内容后,第一步便是对文本内容预处理;

  • 对英文来说,我们可以把字符都转化为小写形式,去掉accents,á 变成 a,然后利用whitespacepunctuation进行分割;也就是空格和标点符号;
  • 对中文来说,我们可以把繁体转化为简体,分割的方式就只有单个单个字词进行分割了,而优化的方式只有从外部引入tokenizer对文本内容做分词,然后进行后续步骤,不然单个中文字词无法进行分解,有人可能想通过偏旁部首来,但偏旁部首如何区分顺序呢?后续的内容将围绕英文展开;

在将文本切割成以word为单位的小块后,我们进行下一步骤;

2.2 计数

在预处理这一阶段,我们得到了以word为单位的小块,为了了解总体words的情况,我们需要对word进行计数处理,并按照数量从大到小排列;如果文本内容很大,我们可以在此做一个优化,过滤掉数量太大或者太小的word以及过滤掉长度太长的word

由于word piece的本质是subwords,为了合理的把word转化为subwords,我们必须考虑word的基本单元;因为如果词表中缺少组成word的基本单元,那么该词的表示就无法实现或者不完整和其他词照成混淆;

所以在这里我们统计所有的词其单个字符出现的次数;同理,在这里我们可以优化一下,删除出现次数较少的字符,由于出现次数较少的字符删除了,哪包含这些字符的words也就无法表示,所以我们同时要删除包含这些字符的words

2.3 分割

在这一环节,我们对计数字典的word进行分割,其处理方式如下:

首先对word设置一个首指针和一个尾指针,以指针之间的内容求匹配计数字典和字符字典的合集,若成功,则将首指针指向尾指针,然后尾指针重新指向最后的位置,若失败,则将尾指针向首指针移动一步;直到停止首尾位置一致,若首尾在尾部则返回output_tokens,若在其他地方则说明不能分词,返回None

实现过程如图所示:

实现代码如下:

def get_split_indices(word, curr_tokens, include_joiner_token, joiner):  indices = []  start = 0  while start < len(word):  end = len(word)  while end > start:  subtoken = word[start:end]  # Subtoken includes the joiner token.  if include_joiner_token and start > 0:  subtoken = joiner + subtoken  # If subtoken is part of vocab, 'end' is a valid start index.  if subtoken in curr_tokens:  indices.append(end)  break  end -= 1  if end == start:  return 1  start = end  return indices  if __name__ == '__main__':  res = get_split_indices('hello', ['h', '##e', '##llo', '##o'], True, '##')  # print(res)  res: [1, 2, 5]

2.4 添加subword

上一步分割的作用实际上是在找最大的分词块,但是其采用的是一种贪婪算法,并不是最优解;在对word进行分割找最大的分割块的indice之后,我们可以更快的找到常常出现在一起的字符串;处理方式如下:获取每一个以indice位置开始,长度依次增加的subword,构建subword字典并计数,其每次增加的数目应该是word.count

这种遍历方式产生的subword的数目过于庞大,因此如果有需要,我们需要对其进行一些优化,比如删掉一些长度较长的subword,删除一些次数比较小的subword,这样添加subword的这一步骤就算完成了;

但是要注意的是,这里的subword出现了重复计数,我们考虑了长的字符串,那么短的字符串一定会被考虑,这里我们从长字符串到短字符开始遍历,当确定长字符串有一定数目确定为vocabulary中的元素时,我们把所有有相同前缀的短字符串减去长字符串的数目避免影响;

与此同时,vocabulary并不一定包含了字符字典,所以我们需要将其进行合并,最后得到的vocabulary就是wordpiece vocabulary

三、代码实现

首先我们对word进行预处理,这里代码省略;

在这里我们传入一个iterable迭代器,然后用collections库中的Counter,对每个词进行计数;

def count_words(iterable) -> collections.Counter:  """Converts a iterable of arrays of words into a `Counter` of word counts."""  counts = collections.Counter()  for words in iterable:  # Convert a RaggedTensor to a flat/dense Tensor.  words = getattr(words, 'flat_values', words)  # Flatten any dense tensor  words = np.reshape(words, [-1])  counts.update(words)  # Decode the words if necessary.  example_word = next(iter(counts.keys()))  if isinstance(example_word, bytes):  counts = collections.Counter(  {word.decode('utf-8'): count for word, count in counts.items()})  return counts

根据当前词频以及upper_threshlower_thresh确定词频的界限;

def get_search_threshs(word_counts, upper_thresh, lower_thresh):  """Clips the thresholds for binary search based on current word counts.  The upper threshold parameter typically has a large default value that can    result in many iterations of unnecessary search. Thus we clip the upper and    lower bounds of search to the maximum and the minimum wordcount values.  Args:      word_counts: list of (string, int) tuples      upper_thresh: int, upper threshold for binary search      lower_thresh: int, lower threshold for binary search  Returns:      upper_search: int, clipped upper threshold for binary search      lower_search: int, clipped lower threshold for binary search    """  counts = [count for _, count in word_counts]  max_count = max(counts)  min_count = min(counts)  if upper_thresh is None:  upper_search = max_count  else:  upper_search = max_count if max_count < upper_thresh else upper_thresh  if lower_thresh is None:  lower_search = min_count  else:  lower_search = min_count if min_count > lower_thresh else lower_thresh  return upper_search, lower_search

对单个的char的数量设置一个上限;

def get_allowed_chars(all_counts, max_unique_chars):  """Get the top max_unique_chars characters within our wordcounts.  We want each character to be in the vocabulary so that we can keep splitting    down to the character level if necessary. However, in order not to inflate    our vocabulary with rare characters, we only keep the top max_unique_chars    characters.  Args:      all_counts: list of (string, int) tuples      max_unique_chars: int, maximum number of unique single-character tokens  Returns:      set of strings containing top max_unique_chars characters in all_counts    """  char_counts = collections.defaultdict(int)  for word, count in all_counts:  for char in word:  char_counts[char] += count  # Sort by count, then alphabetically.  sorted_counts = sorted(sorted(char_counts.items(), key=lambda x: x[0]),  key=lambda x: x[1], reverse=True)  allowed_chars = set()  for i in range(min(len(sorted_counts), max_unique_chars)):  allowed_chars.add(sorted_counts[i][0])  return allowed_chars

结合all_countsallowed_chars,删掉包含allowed_char的字符,控制结果为max_input_tokens个出现次数最大的word

def filter_input_words(all_counts, allowed_chars, max_input_tokens):  """Filters out words with unallowed chars and limits words to max_input_tokens.  Args:      all_counts: list of (string, int) tuples      allowed_chars: list of single-character strings      max_input_tokens: int, maximum number of tokens accepted as input  Returns:      list of (string, int) tuples of filtered wordcounts    """    # Ensure that the input is sorted so that if `max_input_tokens` is reached  # the least common tokens are dropped.    all_counts = sorted(  all_counts, key=lambda word_and_count: word_and_count[1], reverse=True)  filtered_counts = []  for word, count in all_counts:  if (max_input_tokens != -1 and  len(filtered_counts) >= max_input_tokens):  break  has_unallowed_chars = False  for char in word:  if char not in allowed_chars:  has_unallowed_chars = True  break        if has_unallowed_chars:  continue  filtered_counts.append((word, count))  return filtered_counts

获得splitindex,要保证curr_tokens可以对word进行分割;

def get_split_indices(word, curr_tokens, include_joiner_token, joiner):  """Gets indices for valid substrings of word, for iterations > 0.  For iterations > 0, rather than considering every possible substring, we only    want to consider starting points corresponding to the start of wordpieces in    the current vocabulary.  Args:      word: string we want to split into substrings      curr_tokens: string to int dict of tokens in vocab (from previous iteration)      include_joiner_token: bool whether to include joiner token      joiner: string used to indicate suffixes  Returns:      list of ints containing valid starting indices for word    """  indices = []  start = 0  while start < len(word):  end = len(word)  while end > start:  subtoken = word[start:end]  # Subtoken includes the joiner token.  if include_joiner_token and start > 0:  subtoken = joiner + subtoken  # If subtoken is part of vocab, 'end' is a valid start index.  if subtoken in curr_tokens:  indices.append(end)  break  end -= 1  if end == start:  return None  start = end  return indices

进行最后的步骤;

import collections  
from typing import List, Optional  Params = collections.namedtuple('Params', [  'upper_thresh', 'lower_thresh', 'num_iterations', 'max_input_tokens',  'max_token_length', 'max_unique_chars', 'vocab_size', 'slack_ratio',  'include_joiner_token', 'joiner', 'reserved_tokens'  
])  def extract_char_tokens(word_counts):  """Extracts all single-character tokens from word_counts.  Args:      word_counts: list of (string, int) tuples  Returns:      set of single-character strings contained within word_counts    """  seen_chars = set()  for word, _ in word_counts:  for char in word:  seen_chars.add(char)  return seen_chars  def ensure_all_tokens_exist(input_tokens, output_tokens, include_joiner_token,  joiner):  """Adds all tokens in input_tokens to output_tokens if not already present.  Args:      input_tokens: set of strings (tokens) we want to include      output_tokens: string to int dictionary mapping token to count      include_joiner_token: bool whether to include joiner token      joiner: string used to indicate suffixes  Returns:      string to int dictionary with all tokens in input_tokens included    """  for token in input_tokens:  if token not in output_tokens:  output_tokens[token] = 1  if include_joiner_token:  joined_token = joiner + token  if joined_token not in output_tokens:  output_tokens[joined_token] = 1  return output_tokens  def get_search_threshs(word_counts, upper_thresh, lower_thresh):  """Clips the thresholds for binary search based on current word counts.  The upper threshold parameter typically has a large default value that can    result in many iterations of unnecessary search. Thus we clip the upper and    lower bounds of search to the maximum and the minimum wordcount values.  Args:      word_counts: list of (string, int) tuples      upper_thresh: int, upper threshold for binary search      lower_thresh: int, lower threshold for binary search  Returns:      upper_search: int, clipped upper threshold for binary search      lower_search: int, clipped lower threshold for binary search    """  counts = [count for _, count in word_counts]  max_count = max(counts)  min_count = min(counts)  if upper_thresh is None:  upper_search = max_count  else:  upper_search = max_count if max_count < upper_thresh else upper_thresh  if lower_thresh is None:  lower_search = min_count  else:  lower_search = min_count if min_count > lower_thresh else lower_thresh  return upper_search, lower_search  def get_input_words(word_counts, reserved_tokens, max_token_length):  """Filters out words that are longer than max_token_length or are reserved.  Args:      word_counts: list of (string, int) tuples      reserved_tokens: list of strings      max_token_length: int, maximum length of a token  Returns:      list of (string, int) tuples of filtered wordcounts    """  all_counts = []  for word, count in word_counts:  if len(word) > max_token_length or word in reserved_tokens:  continue  all_counts.append((word, count))  return all_counts  def generate_final_vocabulary(reserved_tokens, char_tokens, curr_tokens):  """Generates final vocab given reserved, single-character, and current tokens.  Args:      reserved_tokens: list of strings (tokens) that must be included in vocab      char_tokens: set of single-character strings      curr_tokens: string to int dict mapping token to count  Returns:      list of strings representing final vocabulary    """  sorted_char_tokens = sorted(list(char_tokens))  vocab_char_arrays = []  vocab_char_arrays.extend(reserved_tokens)  vocab_char_arrays.extend(sorted_char_tokens)  # Sort by count, then alphabetically.  sorted_tokens = sorted(sorted(curr_tokens.items(), key=lambda x: x[0]),  key=lambda x: x[1], reverse=True)  for token, _ in sorted_tokens:  vocab_char_arrays.append(token)  seen_tokens = set()  # Adding unique tokens to list to maintain sorted order.  vocab_words = []  for word in vocab_char_arrays:  if word in seen_tokens:  continue  seen_tokens.add(word)  vocab_words.append(word)  return vocab_words  def learn_with_thresh(word_counts, thresh, params):  """Wordpiece learning algorithm to produce a vocab given frequency threshold.  Args:      word_counts: list of (string, int) tuples      thresh: int, frequency threshold for a token to be included in the vocab      params: Params namedtuple, parameters for learning  Returns:      list of strings, vocabulary generated for the given thresh    """  # Set of single-character tokens.  char_tokens = extract_char_tokens(word_counts)  curr_tokens = ensure_all_tokens_exist(char_tokens, {},  params.include_joiner_token,  params.joiner)  for iteration in range(params.num_iterations):  subtokens = [dict() for _ in range(params.max_token_length + 1)]  # Populate array with counts of each subtoken.  for word, count in word_counts:  if iteration == 0:  split_indices = range(1, len(word) + 1)  else:  split_indices = get_split_indices(word, curr_tokens,  params.include_joiner_token,  params.joiner)  if not split_indices:  continue  start = 0  for index in split_indices:  for end in range(start + 1, len(word) + 1):  subtoken = word[start:end]  length = len(subtoken)  if params.include_joiner_token and start > 0:  subtoken = params.joiner + subtoken  if subtoken in subtokens[length]:  # Subtoken exists, increment count.  subtokens[length][subtoken] += count  else:  # New subtoken, add to dict.  subtokens[length][subtoken] = count  start = index  next_tokens = {}  # Get all tokens that have a count above the threshold.  for length in range(params.max_token_length, 0, -1):  for token, count in subtokens[length].items():  if count >= thresh:  next_tokens[token] = count  # Decrement the count of all prefixes.  if len(token) > length:  # This token includes the joiner.  joiner_len = len(params.joiner)  for i in range(1 + joiner_len, length + joiner_len):  prefix = token[0:i]  if prefix in subtokens[i - joiner_len]:  subtokens[i - joiner_len][prefix] -= count  else:  for i in range(1, length):  prefix = token[0:i]  if prefix in subtokens[i]:  subtokens[i][prefix] -= count  # Add back single-character tokens.  curr_tokens = ensure_all_tokens_exist(char_tokens, next_tokens,  params.include_joiner_token,  params.joiner)  vocab_words = generate_final_vocabulary(params.reserved_tokens, char_tokens,  curr_tokens)  return vocab_words  def learn_binary_search(word_counts, lower, upper, params):  """Performs binary search to find wordcount frequency threshold.  Given upper and lower bounds and a list of (word, count) tuples, performs    binary search to find the threshold closest to producing a vocabulary    of size vocab_size.  Args:      word_counts: list of (string, int) tuples      lower: int, lower bound for binary search      upper: int, upper bound for binary search      params: Params namedtuple, parameters for learning  Returns:      list of strings, vocab that is closest to target vocab_size    """    thresh = (upper + lower) // 2  current_vocab = learn_with_thresh(word_counts, thresh, params)  current_vocab_size = len(current_vocab)  # Allow count to be within k% of the target count, where k is slack ratio.  slack_count = params.slack_ratio * params.vocab_size  if slack_count < 0:  slack_count = 0  is_within_slack = (current_vocab_size <= params.vocab_size) and (  params.vocab_size - current_vocab_size <= slack_count)  # We've created a vocab within our goal range (or, ran out of search space).  if is_within_slack or lower >= upper or thresh <= 1:  return current_vocab  current_vocab = None  if current_vocab_size > params.vocab_size:  return learn_binary_search(word_counts, thresh + 1, upper, params)  else:  return learn_binary_search(word_counts, lower, thresh - 1, params)  

整合:

def learn(word_counts,  vocab_size: int,  reserved_tokens: List[str],  upper_thresh: Optional[int] = int(1e7),  lower_thresh: Optional[int] = 10,  num_iterations: int = 4,  max_input_tokens: Optional[int] = int(5e6),  max_token_length: int = 50,  max_unique_chars: int = 1000,  slack_ratio: float = 0.05,  include_joiner_token: bool = True,  joiner: str = '##') -> List[str]:  """Takes in wordcounts and returns wordpiece vocabulary.  Args:      word_counts: (word, count) pairs as a dictionary, or list of tuples.      vocab_size: The target vocabulary size. This is the maximum size.      reserved_tokens: A list of tokens that must be included in the vocabulary.      upper_thresh: Initial upper bound on the token frequency threshold.      lower_thresh: Initial lower bound on the token frequency threchold.      num_iterations: Number of iterations to run.      max_input_tokens: The maximum number of words in the initial vocabulary. The        words with the lowest counts are discarded. Use `None` or `-1` for "no        maximum".      max_token_length: The maximum token length. Counts for longer words are        discarded.      max_unique_chars: The maximum alphabet size. This prevents rare characters        from inflating the vocabulary. Counts for words containing characters        ouside of the selected alphabet are discarded.      slack_ratio: The maximum deviation acceptable from `vocab_size` for an        acceptable vocabulary. The acceptable range of vocabulary sizes is from        `vocab_size*(1-slack_ratio)` to `vocab_size`.      include_joiner_token: If true, include the `joiner` token in the output        vocabulary.      joiner: The prefix to include on suffix tokens in the output vocabulary.        Usually "##". For example 'places' could be tokenized as `['place',        '##s']`.  Returns:      string, final vocabulary with each word separated by newline    """    if isinstance(word_counts, dict):  word_counts = word_counts.items()  params = Params(upper_thresh, lower_thresh, num_iterations, max_input_tokens,  max_token_length, max_unique_chars, vocab_size, slack_ratio,  include_joiner_token, joiner, reserved_tokens)  upper_search, lower_search = get_search_threshs(word_counts,  params.upper_thresh,  params.lower_thresh)  all_counts = get_input_words(word_counts, params.reserved_tokens,  params.max_token_length)  allowed_chars = get_allowed_chars(all_counts, params.max_unique_chars)  filtered_counts = filter_input_words(all_counts, allowed_chars,  params.max_input_tokens)  vocab = learn_binary_search(filtered_counts, lower_search, upper_search,  params)  return vocab

这篇关于WordPiece词表的创建的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/460654

相关文章

C#原型模式之如何通过克隆对象来优化创建过程

《C#原型模式之如何通过克隆对象来优化创建过程》原型模式是一种创建型设计模式,通过克隆现有对象来创建新对象,避免重复的创建成本和复杂的初始化过程,它适用于对象创建过程复杂、需要大量相似对象或避免重复初... 目录什么是原型模式?原型模式的工作原理C#中如何实现原型模式?1. 定义原型接口2. 实现原型接口3

Python中conda虚拟环境创建及使用小结

《Python中conda虚拟环境创建及使用小结》本文主要介绍了Python中conda虚拟环境创建及使用小结,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录0.前言1.Miniconda安装2.conda本地基本操作3.创建conda虚拟环境4.激活c

使用Python创建一个能够筛选文件的PDF合并工具

《使用Python创建一个能够筛选文件的PDF合并工具》这篇文章主要为大家详细介绍了如何使用Python创建一个能够筛选文件的PDF合并工具,文中的示例代码讲解详细,感兴趣的小伙伴可以了解下... 目录背景主要功能全部代码代码解析1. 初始化 wx.Frame 窗口2. 创建工具栏3. 创建布局和界面控件4

Java中对象的创建和销毁过程详析

《Java中对象的创建和销毁过程详析》:本文主要介绍Java中对象的创建和销毁过程,对象的创建过程包括类加载检查、内存分配、初始化零值内存、设置对象头和执行init方法,对象的销毁过程由垃圾回收机... 目录前言对象的创建过程1. 类加载检查2China编程. 分配内存3. 初始化零值4. 设置对象头5. 执行

Android 悬浮窗开发示例((动态权限请求 | 前台服务和通知 | 悬浮窗创建 )

《Android悬浮窗开发示例((动态权限请求|前台服务和通知|悬浮窗创建)》本文介绍了Android悬浮窗的实现效果,包括动态权限请求、前台服务和通知的使用,悬浮窗权限需要动态申请并引导... 目录一、悬浮窗 动态权限请求1、动态请求权限2、悬浮窗权限说明3、检查动态权限4、申请动态权限5、权限设置完毕后

Python创建Excel的4种方式小结

《Python创建Excel的4种方式小结》这篇文章主要为大家详细介绍了Python中创建Excel的4种常见方式,文中的示例代码简洁易懂,具有一定的参考价值,感兴趣的小伙伴可以学习一下... 目录库的安装代码1——pandas代码2——openpyxl代码3——xlsxwriterwww.cppcns.c

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题

《解决IDEA使用springBoot创建项目,lombok标注实体类后编译无报错,但是运行时报错问题》文章详细描述了在使用lombok的@Data注解标注实体类时遇到编译无误但运行时报错的问题,分析... 目录问题分析问题解决方案步骤一步骤二步骤三总结问题使用lombok注解@Data标注实体类,编译时

MySQL分表自动化创建的实现方案

《MySQL分表自动化创建的实现方案》在数据库应用场景中,随着数据量的不断增长,单表存储数据可能会面临性能瓶颈,例如查询、插入、更新等操作的效率会逐渐降低,分表是一种有效的优化策略,它将数据分散存储在... 目录一、项目目的二、实现过程(一)mysql 事件调度器结合存储过程方式1. 开启事件调度器2. 创

mysql外键创建不成功/失效如何处理

《mysql外键创建不成功/失效如何处理》文章介绍了在MySQL5.5.40版本中,创建带有外键约束的`stu`和`grade`表时遇到的问题,发现`grade`表的`id`字段没有随着`studen... 当前mysql版本:SELECT VERSION();结果为:5.5.40。在复习mysql外键约