阿里巴巴倡导的数据中台,到底是什么东东

2023-12-05 17:18

本文主要是介绍阿里巴巴倡导的数据中台,到底是什么东东,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

几年前,数据中台的概念就开始在互联网企业里面流行,现在已经普及的差不多了。数据中台的概念由阿里提出,是为了应对像双十一这样的业务高峰、应对大规模数据的线性可扩展问题、应对复杂业务系统的解耦问题,而在技术、组织架构等方面采取的一些变革,其本质上还是一个平台,阿里称之为“共享服务平台(Shared Platform as Service,SPAS)”。

阿里巴巴倡导的数据中台,到底是什么东东

 

SPAS采用的是基于面向服务的架构SOA理念的 “去中心化”的服务架构,所有的服务都是以“点对点”的方式进行交互。阿里之所以选择“去中心化”的分布式服务架构,主要是考虑到扩展性。毕竟互联网公司的用户群体是整个互联网公众,首先要解决的就是系统的扩展性问题。因为一旦有更多的用户访问,平台若不能扩展,可能给平台带来灾难性的后果。

一、阿里的双中台架构

阿里数据业务双中台:主要由数据中台业务中台并肩构成了双中台,并肩扛起了所有前台业务。

阿里巴巴倡导的数据中台,到底是什么东东

 

  1. 业务中台:实现了后端业务资源到前台易用能力的转化。
  2. 数据中台:从后台及业务中台将数据流入,完成海量数据的存储、计算、产品化包装过程,构成企业的核心数据能力。

业务中台与数据中台,相辅相成,互相支撑,一起构建起了战场强大的后方炮火群。

二、为什么需要中台

在中台之前,早已经有了前台和后台的概念。前台是由各个应用组成的前端系统平台。前端系统直接触达用户,通过前台,企业与最终用户直接进行信息交互。例如,企业搭建的电子商务网站、门户网站、手机APP、微信公众号等都属于前台。后台是由各个业务管理系统组成的后端平台。每个后台业务系统管理了企业的一块业务,例如,财务系统、产品系统、客户管理系统、仓库物流管理系统等。基础设施、存储和计算平台作为企业的核心计算资源,也属于后台的一部分。

阿里巴巴倡导的数据中台,到底是什么东东

 

大多数企业的后台建设是为了满足各个业务管理的需求,所以多被称作管理信息系统。后台系统是为了解决企业管理的效率问题,并不是为了服务于前台。这类系统或是当年花大价钱外购,需要每年支付大量的服务费,并且版本老旧,定制化困难;又或是是花大价钱自建,年久失修,一身的补丁,同样变更困难;而且各个系统之间彼此相对独立,形成了一个一个“烟囱”,信息很难流通,即使系统间有集成,也只是两两系统之间做了接口,尽管有些企业建了数据中心和数据仓库,也仅仅是个集中存放数据的大数据库,形成了一个更大的“信息孤岛”。

所以,企业后台往往并不能很好地支撑前台快速创新响应用户的需求,而中台要解决的才是前台的创新问题。

三、中台能更好的支撑前台创新

中台连接了前台用户与后台核心资源,既可以将早已臃肿不堪的前台系统中的稳定通用业务能力“沉降”到中台层,为前台减肥,实施“大中台,小前台”战略,恢复前台的响应力,前台可以快速生成各种微应用;又可以将后台系统中需要频繁变化或是需要被前台直接使用的业务能力“提取”到中台层,赋予这些业务能力更强的灵活度和更低的变更成本,从而为前台提供更强大的“能力炮火”⽀援。

阿里巴巴倡导的数据中台,到底是什么东东

 

四、数据中台如何提供服务

数据中台提供三类服务:依赖接口的服务、依赖工具的服务和依赖数据的服务。在这三种服务中,笔者重点关注的是依赖于数据的服务,数据中台具有大数据分析能力,并将该能力通过接口服务等方式对外提供。这一点是数据中台与数仓的最大区别,数仓对外直接提供规整的数据分析能力,一般由BI工具或者大数据挖掘工具负责,而数据中台直接将数据封装成服务,以API等方式对外输出。数据中台原则上只提供通用的服务接口,个性化在业务层实现,简化上层业务使用,提升对业务需求的响应效率。

五、数据中台的本质

数据中台最核心的是OneData体系。这个体系实质上是一个数据管理体系,包括全局数据仓库规划、数据规范定义、数据建模研发、数据连接萃取、数据运维监控、数据资产管理工具等。为了帮助您理解数据仓库和数据中台的区别,我们把两者做个对比,先看一下数据仓库架构。

阿里巴巴倡导的数据中台,到底是什么东东

 

数据仓库是为企业所有级别的决策制定过程,提供所有类型数据支持的战略集合,出于分析性报告和决策支持目的而创建。

数据中台是一个数据集成平台,它不仅仅是为数据分析挖掘而建,它更重要的功能是作为各个业务的数据源,为业务系统提供数据和计算服务。数据中台的本质就是“数据仓库+数据服务中间件”。

中台构建这种服务时是考虑到可复用性的,每个服务就像一块积木,可以随意组合,非常灵活,有些个性化的需求在前台解决,这样就避免了重复建设,既省时、省力,又省钱。

六、如何创建数据中台

如何打通企业数据并以统一的标准进行建设,达到技术降本、应用提效、业务赋能的目标,将会成为众多企业面临的问题,而数据中台模式正是为解决该问题而生。全域数据采集与引入、标准规范数据架构与研发、连接与深度萃取数据价值、统一数据资产管理、统一主题式服务、赋能业务并闭环迭代,是数据中台建设的核心六个方面。

阿里巴巴倡导的数据中台,到底是什么东东

 

围绕“规划、治理、整合、共享”四步,将企业海量、多维的数据资产盘点、整合、分析、确保整个公司数据一致性和可复用性,为前台提供数据资产、数据定制创新、数据监测与数据分析等服务,最终实现数据资产的价值最大化。

这篇关于阿里巴巴倡导的数据中台,到底是什么东东的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458435

相关文章

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

使用SecondaryNameNode恢复NameNode的数据

1)需求: NameNode进程挂了并且存储的数据也丢失了,如何恢复NameNode 此种方式恢复的数据可能存在小部分数据的丢失。 2)故障模拟 (1)kill -9 NameNode进程 [lytfly@hadoop102 current]$ kill -9 19886 (2)删除NameNode存储的数据(/opt/module/hadoop-3.1.4/data/tmp/dfs/na

异构存储(冷热数据分离)

异构存储主要解决不同的数据,存储在不同类型的硬盘中,达到最佳性能的问题。 异构存储Shell操作 (1)查看当前有哪些存储策略可以用 [lytfly@hadoop102 hadoop-3.1.4]$ hdfs storagepolicies -listPolicies (2)为指定路径(数据存储目录)设置指定的存储策略 hdfs storagepolicies -setStoragePo

Hadoop集群数据均衡之磁盘间数据均衡

生产环境,由于硬盘空间不足,往往需要增加一块硬盘。刚加载的硬盘没有数据时,可以执行磁盘数据均衡命令。(Hadoop3.x新特性) plan后面带的节点的名字必须是已经存在的,并且是需要均衡的节点。 如果节点不存在,会报如下错误: 如果节点只有一个硬盘的话,不会创建均衡计划: (1)生成均衡计划 hdfs diskbalancer -plan hadoop102 (2)执行均衡计划 hd

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

烟火目标检测数据集 7800张 烟火检测 带标注 voc yolo

一个包含7800张带标注图像的数据集,专门用于烟火目标检测,是一个非常有价值的资源,尤其对于那些致力于公共安全、事件管理和烟花表演监控等领域的人士而言。下面是对此数据集的一个详细介绍: 数据集名称:烟火目标检测数据集 数据集规模: 图片数量:7800张类别:主要包含烟火类目标,可能还包括其他相关类别,如烟火发射装置、背景等。格式:图像文件通常为JPEG或PNG格式;标注文件可能为X

pandas数据过滤

Pandas 数据过滤方法 Pandas 提供了多种方法来过滤数据,可以根据不同的条件进行筛选。以下是一些常见的 Pandas 数据过滤方法,结合实例进行讲解,希望能帮你快速理解。 1. 基于条件筛选行 可以使用布尔索引来根据条件过滤行。 import pandas as pd# 创建示例数据data = {'Name': ['Alice', 'Bob', 'Charlie', 'Dav

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者