Hadoop学习笔记(HDP)-Part.17 安装Spark2

2023-12-05 16:52

本文主要是介绍Hadoop学习笔记(HDP)-Part.17 安装Spark2,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录
Part.01 关于HDP
Part.02 核心组件原理
Part.03 资源规划
Part.04 基础环境配置
Part.05 Yum源配置
Part.06 安装OracleJDK
Part.07 安装MySQL
Part.08 部署Ambari集群
Part.09 安装OpenLDAP
Part.10 创建集群
Part.11 安装Kerberos
Part.12 安装HDFS
Part.13 安装Ranger
Part.14 安装YARN+MR
Part.15 安装HIVE
Part.16 安装HBase
Part.17 安装Spark2
Part.18 安装Flink
Part.19 安装Kafka
Part.20 安装Flume

十七、安装Spark2

1.安装

添加Spark2服务
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
需要重启HDFS、YARN、MapReduce2、Hive、HBase等相关服务

2.取消kerberos对页面的认证

在CONFIGS->Advanced spark2-env下的content里,将下面内容加#注释掉

export SPARK_HISTORY_OPTS='-Dspark.ui.filters=org.apache.hadoop.security.authentication.server.AuthenticationFilter -Dspark.org.apache.hadoop.security.authentication.server.AuthenticationFilter.params="type=kerberos,kerberos.principal={{spnego_principal}},kerberos.keytab={{spnego_keytab}}"'

在这里插入图片描述
访问页面,http://hdp01.hdp.com:18081/
在这里插入图片描述

3.确认Spark on Yarn配置

查看/usr/hdp/3.1.5.0-152/spark2/conf/spark-env.sh

export HADOOP_HOME=${HADOOP_HOME:-/usr/hdp/3.1.5.0-152/hadoop}
export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-/usr/hdp/3.1.5.0-152/hadoop/conf}

/usr/hdp/3.1.5.0-152/hadoop-yarn/conf/yarn-site.xml

4.spark-shell交互式命令

每个Spark应用程序都需要一个Spark环境,这是Spark RDD API的主要入口点。Spark Shell提供了一个名为“sc”的预配置Spark环境和一个名为“spark”的预配置Spark会话。使用Spark Shell的时候,本身是预配置了sc,即SparkConf和SparkContext的,但是在实际使用编辑器编程过程中是需要设置这些配置的。

(1)启动

启动spark-shell

spark-shell --master local

在这里插入图片描述
正确界面如下:
在这里插入图片描述
(2)加载本地文件
通过预置sc加载本地文件

val textFile = sc.textFile("file:///root/wordcount_input")

val后面的是变量textFile,而sc.textFile()中的这个textFile是sc的一个方法名称,这个方法用来加载文件数据。这两个textFile不是一个东西,不要混淆。实际上,val后面的是变量textFile。
要加载本地文件,必须采用“file:///”开头的这种格式。执行上上面这条命令以后,并不会马上显示结果,因为,Spark采用惰性机制,只有遇到“行动”类型的操作,才会从头到尾执行所有操作。

textFile.first()

first()是一个“行动”(Action)类型的操作,会启动真正的计算过程,从文件中加载数据到变量textFile中,并取出第一行文本。屏幕上会显示很多反馈信息,这里不再给出,你可以从这些结果信息中,找到word.txt文件中的第一行的内容。
在这里插入图片描述
正因为Spark采用了惰性机制,在执行转换操作的时候,即使我们输入了错误的语句,spark-shell也不会马上报错,而是等到执行“行动”类型的语句时启动真正的计算,那个时候“转换”操作语句中的错误就会显示出来。
在这里插入图片描述

(3)变量回写到本地文件

将变量中的内容写回到本地文件/root/output中

val textFile = sc.textFile("file:///root/wordcount_input")
textFile.saveAsTextFile("file:///root/output")

上面的saveAsTextFile()括号里面的参数是保存文件的路径,不是文件名。saveAsTextFile()是一个“行动”(Action)类型的操作,所以,马上会执行真正的计算过程,从wordcount_input中加载数据到变量textFile中,然后,又把textFile中的数据写回到本地文件目录“/root/output”下面

ll /root/output/
cat /root/output/part-00000

在这里插入图片描述
(4)加载HDFS中文件
与加载本地文件类似

val textFile = sc.textFile("hdfs://hdp315/testhdfs/tenant1/wordcount_input")
textFile.first()

在这里插入图片描述

实验:Spark SQL-词频统计

(1)spark-shell方式

待统计文件为/root/wordcount_input

spark-shell --master local
val textFile = sc.textFile("file:///root/wordcount_input")
val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).ruduceByKey((a,b) => a + b)
wordCount.collect()

在这里插入图片描述
textFile包含了多行文本内容,textFile.flatMap(line => line.split(" “))会遍历textFile中的每行文本内容,当遍历到其中一行文本内容时,会把文本内容赋值给变量line,并执行Lamda表达式line => line.split(” “)。line => line.split(” “)是一个Lamda表达式,左边表示输入参数,右边表示函数里面执行的处理逻辑,这里执行line.split(” "),也就是针对line中的一行文本内容,采用空格作为分隔符进行单词切分,从一行文本切分得到很多个单词构成的单词集合。这样,对于textFile中的每行文本,都会使用Lamda表达式得到一个单词集合,最终,多行文本,就得到多个单词集合。textFile.flatMap()操作就把这多个单词集合“拍扁”得到一个大的单词集合。
然后,针对这个大的单词集合,执行map()操作,也就是map(word => (word, 1)),这个map操作会遍历这个集合中的每个单词,当遍历到其中一个单词时,就把当前这个单词赋值给变量word,并执行Lamda表达式word => (word, 1),这个Lamda表达式的含义是,word作为函数的输入参数,然后,执行函数处理逻辑,这里会执行(word, 1),也就是针对输入的word,构建得到一个tuple,形式为(word,1),key是word,value是1(表示该单词出现1次)。
程序执行到这里,已经得到一个RDD,这个RDD的每个元素是(key,value)形式的tuple。最后,针对这个RDD,执行reduceByKey((a, b) => a + b)操作,这个操作会把所有RDD元素按照key进行分组,然后使用给定的函数(这里就是Lamda表达式:(a, b) => a + b),对具有相同的key的多个value进行reduce操作,返回reduce后的(key,value),比如(“hadoop”,1)和(“hadoop”,1),具有相同的key,进行reduce以后就得到(“hadoop”,2),这样就计算得到了这个单词的词频。

(2)spark-submit方式

建议找一台有外网的服务器来做sbt,因为需要下载很多依赖包
安装sbt

tar -zxvf /opt/sbt-1.8.2.tgz -C /usr/local/

将位于sbt/bin下面的sbt-launch.jar文件放在sbt目录下。
cp /usr/local/sbt/bin/sbt-launch.jar /usr/local/sbt/
在sbt目录下创建sbt脚本

chmod u+x /usr/local/sbt/sbt

确认是否成功

/usr/local/sbt/sbt sbtVersion

在这里插入图片描述
创建工程目录及相关文件
在这里插入图片描述
scala文件,/data01/project/wordcount/src/main/scala/wordcount.scala

import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConfobject WordCount {def main(args: Array[String]) {val inputFile =  "hdfs://hdp315/testhdfs/ranger_yarn/wordcount_input"val conf = new SparkConf().setAppName("WordCount")val sc = new SparkContext(conf)val textFile = sc.textFile(inputFile)val wordCount = textFile.flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey((a, b) => a + b)wordCount.foreach(println)}
}

sbt文件,/data01/project/wordcount/wordcount.sbt

name := "WordCount Project"version := "1.0"scalaVersion := "2.11.12"libraryDependencies += "org.apache.spark" %% "spark-core" % "2.3.0"

进入到工程目录下,将整个工程打成jar包

/usr/local/sbt/sbt package

在这里插入图片描述
jar包在工程目录下的./target/scala-2.11/下
在这里插入图片描述
回到hdp01上,通过spark-submit提交jar包执行

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
spark-submit --class "WordCount" /root/wordcount-project_2.11-1.0.jar --deploy-mode cluster --master yarn

在这里插入图片描述
查看结果
在spark中可以查看任务信息,已经结果
在这里插入图片描述
在这里插入图片描述

6.实验:Spark Streaming-显示实时流内容

将nc作为服务器端,用户产生数据;启动sparkstreaming客户端程序,监听服务器端发送过来的数据,并对其数据进行显示。
在测试的nc服务端,启动nc程序,端口为1234

nc -l 1234

配置sbt文件,增加sparking-streaming依赖包,/data01/project/streamPrint/streamPrint.sbt

name := "streamPrint Project"version := "1.0"scalaVersion := "2.11.12"libraryDependencies ++= Seq(
"org.apache.spark" %% "spark-core" % "2.3.0",
"org.apache.spark" %% "spark-streaming" % "2.3.0"
)

配置scala文件,/data01/project/streamPrint/src/main/scala/streamPrint.scala

import org.apache.spark._
import org.apache.spark.streaming._
import org.apache.spark.storage.StorageLevelobject StreamPrint {def main(args: Array[String]) {val conf = new SparkConf().setAppName("streamPrint")val sc = new StreamingContext(conf, Seconds(5))val lines = sc.socketTextStream("192.168.111.1", 1234, StorageLevel.MEMORY_AND_DISK)if (lines != null) {lines.print()println("start!")}sc.start()sc.awaitTermination()}
}

进入到工程目录下,将整个工程打成jar包

/usr/local/sbt/sbt package

回到hdp01上,通过spark-submit提交jar包执行

kinit -kt /root/keytab/ranger_yarn.keytab ranger_yarn
spark-submit --class "StreamPrint" /root/streamprint-project_2.11-1.0.jar --deploy-mode cluster --master yarn

此时在nc服务端输入内容后,可在spark streaming中看到相应的内容
在这里插入图片描述
在这里插入图片描述
Spark streaming中的间隔,是在scala程序中设置的,val sc = new StreamingContext(conf, Seconds(5))因此是5秒输出一次。

7.spark-submit参数

–master
master的地址,提交任务到哪里执行
常见的选项有
local:提交到本地服务器执行,并分配单个线程
local[k]:提交到本地服务器执行,并分配k个线程
spark://HOST:PORT:提交到standalone模式部署的spark集群中,并指定主节点的IP与端口
mesos://HOST:PORT:提交到mesos模式部署的集群中,并指定主节点的IP与端口
yarn:提交到yarn模式部署的集群中
–deploy-mode
在本地(client)启动driver或在cluster上启动,默认是client
DEPLOY_MODE:设置driver启动的位置,可选项如下,默认为client
client:在客户端上启动driver,这样逻辑运算在client上执行,任务执行在cluster上
cluster:逻辑运算与任务执行均在cluster上,cluster模式暂时不支持于Mesos集群或Python应用程序
–class
应用程序的主类,仅针对java或scala应用
CLASS_NAME:指定应用程序的类入口,即主类,仅针对java、scala程序,不作用于python程序
–name
应用程序的名称
–jars
用逗号分隔的本地jar包,设置后,jar包将包含在driver和executor的classpath下
–packages
包含在driver和executor的classpath中的jar的maven坐标
–exclude-packages
为了避免冲突,指定的参数–package中不包含的jars包
–repositories
远程repository
附加的远程资源库(包含jars包)等,可以通过maven坐标进行搜索
–py-files
PY_FILES:逗号隔开的的.zip、.egg、.py文件,这些文件会放置在PYTHONPATH下,该参数仅针对python应用程序
–files
FILES:逗号隔开的文件列表,这些文件将存放于每一个工作节点进程目录下
–conf PROP=VALUE
指定spark配置属性的值,格式为PROP=VALUE,例如–confspark.executor.extraJavaOptions=“-XX:MaxPermSize=256m”
–properties-file
指定需要额外加载的配置文件,用逗号分隔,如果不指定,默认为conf/spark-defaults.conf
–driver-memory
Driver内存,默认1G
–driver-java-options
传给driver的额外的Java选项
–driver-library-path
传给driver的额外的库路径
–driver-class-path
传给driver的额外的类路径,用–jars添加的jar包会自动包含在类路径里
–driver-cores
Driver的核数,默认是1。在yarn或者standalone下使用
–executor-memory
每个executor的内存,默认是1G
–total-executor-cores
所有executor总共的核数。仅仅在mesos或者standalone下使用
–num-executors
启动的executor数量。默认为2。在yarn下使用
–executor-core
每个executor的核数。在yarn或者standalone下使用

这篇关于Hadoop学习笔记(HDP)-Part.17 安装Spark2的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/458360

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

mysql-8.0.30压缩包版安装和配置MySQL环境过程

《mysql-8.0.30压缩包版安装和配置MySQL环境过程》该文章介绍了如何在Windows系统中下载、安装和配置MySQL数据库,包括下载地址、解压文件、创建和配置my.ini文件、设置环境变量... 目录压缩包安装配置下载配置环境变量下载和初始化总结压缩包安装配置下载下载地址:https://d

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

python安装完成后可以进行的后续步骤和注意事项小结

《python安装完成后可以进行的后续步骤和注意事项小结》本文详细介绍了安装Python3后的后续步骤,包括验证安装、配置环境、安装包、创建和运行脚本,以及使用虚拟环境,还强调了注意事项,如系统更新、... 目录验证安装配置环境(可选)安装python包创建和运行Python脚本虚拟环境(可选)注意事项安装

gradle安装和环境配置全过程

《gradle安装和环境配置全过程》本文介绍了如何安装和配置Gradle环境,包括下载Gradle、配置环境变量、测试Gradle以及在IntelliJIDEA中配置Gradle... 目录gradle安装和环境配置1 下载GRADLE2 环境变量配置3 测试gradle4 设置gradle初始化文件5 i

Jsoncpp的安装与使用方式

《Jsoncpp的安装与使用方式》JsonCpp是一个用于解析和生成JSON数据的C++库,它支持解析JSON文件或字符串到C++对象,以及将C++对象序列化回JSON格式,安装JsonCpp可以通过... 目录安装jsoncppJsoncpp的使用Value类构造函数检测保存的数据类型提取数据对json数

mac安装redis全过程

《mac安装redis全过程》文章内容主要介绍了如何从官网下载指定版本的Redis,以及如何在自定义目录下安装和启动Redis,还提到了如何修改Redis的密码和配置文件,以及使用RedisInsig... 目录MAC安装Redis安装启动redis 配置redis 常用命令总结mac安装redis官网下