二叉树——堆(C语言,配图,例题详解,TopK问题+堆排序)

2023-12-05 10:15

本文主要是介绍二叉树——堆(C语言,配图,例题详解,TopK问题+堆排序),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1. 二叉树的顺序存储结构

2. 堆的概念和性质

3. 堆的实现

        3.1 向下调整法

        3.2 堆的创建

        3.3 建堆的时间复杂度:

        3.3 堆的插入

        3.4 堆的删除

        3.5 代码实现

4. TopK问题

5. 堆排序


        数据结构入门————树(C语言/零基础/小白/新手+模拟实现+例题讲解)

        对上述文章中,堆的概念描述可能不清楚,为了方便大家更好的理解,这里对堆进行详细的讲解,其中包括了堆的实现,应用等。如果你对树的一系列概念还不是很熟悉,可以从链接文章中进行阅读了解。

1. 二叉树的顺序存储结构

        普通二叉树是不适合用数组来存储,因为可能会造成大量空间的浪费,而完全二叉树更适合使用顺序存储结构。现实中通常把堆(一种二叉树)使用顺序存储结构的数组来存储,需要注意的是,这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

2. 堆的概念和性质

        

        简单理解,堆就是一种完全二叉树的顺序存储结构的对象。

        堆的性质:

                1. 堆是一棵完全二叉树。

                2. 堆中每个节点的值总是不大于或不小于它的父节点。

        根据堆的性质,可以将堆分为:大堆 小堆

1. 下列关键字序列为堆的是:( A
A 100 , 60 , 70 , 50 , 32 , 65
B 60 , 70 , 65 , 50 , 32 , 100
C 65 , 100 , 70 , 32 , 50 , 60
D 70 , 65 , 100 , 32 , 50 , 60
E 32 , 50 , 100 , 70 , 65 , 60
F 50 , 100 , 70 , 65 , 60 , 32
解析:
        对于这种题目,我们最好的办法就是将每个节点依次试一遍。堆中每个节点总是不大于或不小于它的父节点。
        B. 70 > 60 , 子节点70大于父节点60,50 < 70 ,子节点50小于父节点70
        C. 65 < 70 , 子节点65小于父节点70, 100 > 70 ,子节点100大于父节点70
        D.100>50 ,子节点100大于父节点50,65<100 ,子节点65小于父节点100

3. 堆的实现

        3.1 向下调整法

int array[] = {27,15,19,18,28,34,65,49,25,37};

            我们给出一个数组,逻辑上可以看做一颗完全二叉树,我们通过从根节点开始向下调整可以把把调整成一个小堆,向下调整算法有一个前提:左右子树必须是一个堆,才能调整

            所以实践中,我们一般从倒数第一个非叶子节点的子树开始,从下到上,依次进行向下调整,每次调整都将下面的子树调整成为堆。

        3.2 堆的创建

            下面我们给出一个数组,数组逻辑上可以看做一棵完全二叉树树,但还不是一个堆,现在我们通过算法,把它构建成为一个堆。我们从第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

        3.3 建堆的时间复杂度:

            这是一个等差数列求和,如果感兴趣,可以自己计算一下,这里我们直接得出结论:
            向下调整算法 建堆的时间复杂度:O (N)

            向上调整算法 建堆的时间复杂度:O(N * logN)

        3.3 堆的插入

            先插入到数组尾中,在进行向上调整算法,直到满足堆。向上调整算法也必须满足,前面的子树满足堆。

        3.4 堆的删除

            删除堆就是删除堆顶的数据,将堆顶的数据和最后一个数据交换,然后删除数组中最后一个数据,在进行向下调整算法。

        3.5 代码实现

//Heap.h
typedef int HPDataType;
typedef struct Heap
{HPDataTyp *int _sizeint _capa
}Heap;
// 堆的构建
void HeapCrea e eap p, a aType* a, int n);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);
#include "Heap.h"void Swap(HPDataType* x1, HPDataType* x2)
{HPDataType x = *x1;*x1 = *x2;*x2 = x;
}void AdjustDown(HPDataType* a, int n, int root)
{int parent = root;int child = parent*2+1;while (child < n){// 选左右孩纸中大的一个if (child+1 < n && a[child+1] > a[child]){++child;}//如果孩子大于父亲,进行调整交换 if(a[child] > a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent*2+1;}else{break;}}
}void AdjustUp(HPDataType* a, int n, int child)
{int parent;assert(a);parent = (child-1)/2;//while (parent >= 0)while (child > 0){//如果孩子大于父亲,进行交换if (a[child] > a[parent]){Swap(&a[parent], &a[child]);child = parent;parent = (child-1)/2;}else{break;}}
}void HeapInit(Heap* hp, HPDataType* a, int n)
{int i;assert(hp && a);hp->_a = (HPDataType*)malloc(sizeof(HPDataType)*n);hp->_size = n;hp->_capacity = n;for (i = 0; i < n; ++i){hp->_a[i] = a[i];}// 建堆: 从最后一个非叶子节点开始进行调整// 最后一个非叶子节点,按照规则: (最后一个位置索引 - 1) / 2// 最后一个位置索引: n - 1// 故最后一个非叶子节点位置: (n - 2) / 2for(i = (n-2)/2; i >= 0; --i){AdjustDown(hp->_a, hp->_size, i);}
}void HeapDestory(Heap* hp)
{assert(hp);free(hp->_a);hp->_a = NULL;hp->_size = hp->_capacity = 0;
}void HeapPush(Heap* hp, HPDataType x)
{assert(hp);//检查容量if (hp->_size == hp->_capacity){hp->_capacity *= 2;hp->_a = (HPDataType*)realloc(hp->_a, sizeof(HPDataType)*hp->_capacity);}//尾插hp->_a[hp->_size] = x;hp->_size++;//向上调整AdjustUp(hp->_a, hp->_size, hp->_size-1);
}void HeapPop(Heap* hp)
{assert(hp);//交换Swap(&hp->_a[0], &hp->_a[hp->_size-1]);hp->_size--;//向下调整AdjustDown(hp->_a, hp->_size, 0);
}HPDataType HeapTop(Heap* hp)
{assert(hp);return hp->_a[0];
}int HeapSize(Heap* hp)
{return hp->_size;
}int HeapEmpty(Heap* hp)
{return hp->_size == 0 ? 0 : 1;
}void HeapPrint(Heap* hp)
{int i;for (i = 0; i < hp->_size; ++i){printf("%d ", hp->_a[i]);}printf("\n");
}

4. TopK问题

TOP-K问题:即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大
1. 用数据集合中前 K 个元素来建堆:
    ● 前k 个最大的元素,则建小堆
    ● 前k 个最小的元素,则建大堆
2. 用剩余的 N-K 个元素依次与堆顶元素来比较,不满足则替换堆顶元素

        这里我们使用rand函数创建10万个数,范围是0 ~ 99999,放到文化中,然后单独操作几个数,使得这几个数大于100000,然后输出,堆中的这几个数据,看看是不是TopK。

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <time.h>void CreateFile()
{srand(time(0));const char* file = "test.txt";FILE* fin = fopen(file, "w");if (fin == NULL){perror("fopen");return;}for (int i = 0;i < 10000;i++){int x = rand() % 10000;fprintf(fin,"%d\n", x);}fclose(fin);
}void Swap(int* p1, int* p2)
{int temp = *p1;*p1 = *p2;*p2 = temp;
}void AdjustDown(int* a, int size, int parent)
{int child = parent * 2 + 1;while (child < size){if (child + 1 < size && a[child] > a[child + 1]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}
void AdjustUp(int* a, int child)
{int parent = (child - 1) / 2;while (child > 0){if (a[child] < a[parent]){Swap(&a[child], &a[parent]);child = parent;parent = (child - 1) / 2;}else{break;}}
}
void PrintTopK(int k)
{// min:大堆  max:小堆int* a = (int*)malloc(sizeof(int) * k);assert(a);int x = 0;const char* file = "test.txt";FILE* fout = fopen(file, "r");if (fout == NULL){perror("fopen");return;}for (int i = 0;i < k;i++){fscanf(fout,"%d",&a[i]);}//建堆for (int i = (k - 2) / 2;i >= 0;i--){AdjustDown(a, k, i);}//选数while (fscanf(fout,"%d", &x) != EOF){if (a[0] < x){a[0] = x;AdjustDown(a, k, 0);}}for (int i = 0;i < k;i++){printf("%d ", a[i]);}fclose(fout);
}int main()
{CreateFile();PrintTopK(5);return 0;
}

5. 堆排序

堆排序即利用堆的思想来进行排序,总共分为两个步骤:
1. 建堆
       ●  升序:建大堆
       ●  降序:建小堆
2. 利用堆删除思想来进行排序
建堆和堆删除中都用到了向下调整,因此掌握了向下调整,就可以完成堆排序。

#include <stdio.h>
#include <assert.h>
#include <stdlib.h>void Swap(int* p1, int* p2)
{int temp = *p1;*p1 = *p2;*p2 = temp;
}//向下调整
void AdjustDown(int* a, int size, int parent)
{int child = 2 * parent + 1;while (child < size){if(child+1 < size && a[child] > a[child+1]){child++;}if (a[child] < a[parent]){Swap(&a[child], &a[parent]);parent = child;child = parent * 2 + 1;}else{break;}}
}void Heapsort(int* a, int size)
{assert(a);assert(size > 0);//建堆for (int i = (size - 2) / 2;i >= 0;i--){AdjustDown(a, size, i);}//选数int end = size - 1;while (end > 0){Swap(&a[0], &a[end]);AdjustDown(a, end, 0);end--;}
}int main()
{int a[9] = { 3,6,1,2,4,5,7,9,8 };Heapsort(a, sizeof(a) / sizeof(int));for (int i = 0;i < 9;i++){printf("%d ", a[i]);}return 0;
}

这篇关于二叉树——堆(C语言,配图,例题详解,TopK问题+堆排序)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/457146

相关文章

Linux换行符的使用方法详解

《Linux换行符的使用方法详解》本文介绍了Linux中常用的换行符LF及其在文件中的表示,展示了如何使用sed命令替换换行符,并列举了与换行符处理相关的Linux命令,通过代码讲解的非常详细,需要的... 目录简介检测文件中的换行符使用 cat -A 查看换行符使用 od -c 检查字符换行符格式转换将

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

详解C#如何提取PDF文档中的图片

《详解C#如何提取PDF文档中的图片》提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使用,下面我们就来看看如何使用C#通过代码从PDF文档中提取图片吧... 当 PDF 文件中包含有价值的图片,如艺术画作、设计素材、报告图表等,提取图片可以将这些图像资源进行单独保存,方便后续在不同的项目中使

Android中Dialog的使用详解

《Android中Dialog的使用详解》Dialog(对话框)是Android中常用的UI组件,用于临时显示重要信息或获取用户输入,本文给大家介绍Android中Dialog的使用,感兴趣的朋友一起... 目录android中Dialog的使用详解1. 基本Dialog类型1.1 AlertDialog(

C#数据结构之字符串(string)详解

《C#数据结构之字符串(string)详解》:本文主要介绍C#数据结构之字符串(string),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录转义字符序列字符串的创建字符串的声明null字符串与空字符串重复单字符字符串的构造字符串的属性和常用方法属性常用方法总结摘

Java中StopWatch的使用示例详解

《Java中StopWatch的使用示例详解》stopWatch是org.springframework.util包下的一个工具类,使用它可直观的输出代码执行耗时,以及执行时间百分比,这篇文章主要介绍... 目录stopWatch 是org.springframework.util 包下的一个工具类,使用它

Java进行文件格式校验的方案详解

《Java进行文件格式校验的方案详解》这篇文章主要为大家详细介绍了Java中进行文件格式校验的相关方案,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、背景异常现象原因排查用户的无心之过二、解决方案Magandroidic Number判断主流检测库对比Tika的使用区分zip

Java实现时间与字符串互相转换详解

《Java实现时间与字符串互相转换详解》这篇文章主要为大家详细介绍了Java中实现时间与字符串互相转换的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、日期格式化为字符串(一)使用预定义格式(二)自定义格式二、字符串解析为日期(一)解析ISO格式字符串(二)解析自定义

springboot security快速使用示例详解

《springbootsecurity快速使用示例详解》:本文主要介绍springbootsecurity快速使用示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录创www.chinasem.cn建spring boot项目生成脚手架配置依赖接口示例代码项目结构启用s

Python中随机休眠技术原理与应用详解

《Python中随机休眠技术原理与应用详解》在编程中,让程序暂停执行特定时间是常见需求,当需要引入不确定性时,随机休眠就成为关键技巧,下面我们就来看看Python中随机休眠技术的具体实现与应用吧... 目录引言一、实现原理与基础方法1.1 核心函数解析1.2 基础实现模板1.3 整数版实现二、典型应用场景2