计算机辅助药物设计AIDD-小分子-蛋白质|分子生成|蛋白质配体相互作用预测

本文主要是介绍计算机辅助药物设计AIDD-小分子-蛋白质|分子生成|蛋白质配体相互作用预测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 计算机辅助药物设计AIDD【小分子专题】
    • AIDD概述及药物综合数据库学习
    • 机器学习辅助药物设计
    • 图神经网络辅助药物设计
    • 自然语言处理辅助药物设计
    • 药物设计与分子生成
  • 计算机辅助药物设计【蛋白质专题】
    • 蛋白质数据结构
    • 激酶-Kinase相似性学习
    • 基于序列的蛋白质属性预测
    • 基于结构的蛋白质属性预测
    • 蛋白质-配体相互作用预测PLI

计算机辅助药物设计AIDD【小分子专题】

AIDD概述及药物综合数据库学习

  1. 人工智能辅助药物设计AIDD概述
  2. 安装环境
    1. anaconda
    2. vscode
    3. 虚拟环境
  3. 第三方库基本使用方法
    1. numpy (数据计算工具)
    2. pandas (数据清洗工具)
    3. matplotlib (结果可视化绘图工具)
    4. requests (数据库爬虫工具)
  4. 多种药物综合数据库的获取方式
    1. KEGG(requests爬虫)
    2. Chebi(libChEBIpy)
    3. PubChem(pubchempy / requests)
    4. ChEMBL(chembl_webresource_client)
    5. BiGG(curl)
  5. DeepChem集成MoleculeNet数据库介绍及下载

机器学习辅助药物设计

  1. 机器学习理论知识

    1. 机器学习种类:
      1. 监督学习
      2. 无监督学习
      3. 强化学习
    2. 典型机器学习方法
      1. 决策树
      2. 支持向量机
      3. 朴素贝叶斯
      4. 神经网络
      5. 卷积神经网络
    3. 模型的评估与验证:准确率、精确率、召回率、F1分数、ROC曲线、AUC计算,平均绝对误差、均方差、R2分数、可释方差分数,交叉验证等
    4. sklearn工具包基本使用
  2. rdkit工具包的基本使用

  3. RDKit安装

    1. 化合物编码方式和化合物相似性理论知识
    2. 基于RDKit的分子读写
    3. 基于RDKit的分子绘制
    4. 基于RDKit的分子指纹与分子描述符
    5. 基于RDKit的化合物相似性与子结构
    6. 基于 RDKit 与 Python3 的构象与 RMSD 计算
  4. 项目实战

    1. 基于 Pytorch 和 RDKit 建立 QSAR 模型
    2. 基于 scikit-learn 将 pytorch 用于 QSAR 模型构建
    3. 项目实战1:基于ADME和Ro5的分子筛选
    4. 项目实战2:基于化合物相似性的配体筛选
    5. 项目实战3:基于化合物相似性的分子聚类
    6. 项目实战4: 基于机器学习的生物活性预测
    7. 项目实战5:基于机器学习的分子毒性预测

图神经网络辅助药物设计

  1. 图神经网络基础知识
    1. 框架介绍: PyG,DGL,TorchDrug
    2. 图神经网络消息传递机制
    3. 图神经网络数据集设计
    4. 图神经网络节点预测、图预测任务和边预测任务实战
  2. 项目实战1:基于图神经网络的分子毒性预测
    1. SMILES分子数据集构建PyG图数据集
    2. 基于GNN进行分子毒性预测
  3. 项目实战2:基于图神经网络的蛋白质-配体相互作用预测
    1. 蛋白质分子图形化,构建PyG图数据集
    2. 基于GIN进行网络搭建及相互作用预测

自然语言处理辅助药物设计

  1. 自然语言处理概述
    1. 文本类语言的向量表示方法
    2. Encoder-Decoder模型
    3. 循环神经网络模型
    4. Seq2seq模型
    5. Attention注意力机制
    6. Transformer模型
  2. 项目实战
    1. 基于无监督的Seq2Seq模型进行分子表示学习
    2. 基于Transformer模型的反应表示方法
    3. 基于自然语言处理的反应分类任务
    4. 基于BERT模型的反应产量预测任务

药物设计与分子生成

  1. 分子生成模型概述
    1. 循环神经网络RNN
    2. 变分自动编码器VAE
    3. 生成对抗网络GAN
    4. 强化学习RL
  2. 基于RDKit提取反应规则预测分子生成
    1. 基于 RDKit 处理化学信息学中的反应方程式
    2. 基于 RDKit 绘制化学反应
    3. 基于 RDKit 和 SMARTS 的化学反应处理
    4. 基于RDKit的化学反应指纹与化学反应相似度计算
    5. 基于 RDKit 通过 SMARTS 定义反应模式来生成反应产物
  3. 基于深度学习的分子生成
    1. 基于图数据的小分子化合物生成模型
    2. 基于MolGAN的分子生成
    3. 分子合成可行性评估

计算机辅助药物设计【蛋白质专题】

蛋白质数据结构

  1. 数据库介绍与相关数据爬取
    1. PDB数据库
    2. UniProt数据库
    3. KLIFS数据库
  2. 【基于RDKit的蛋白质基本操作】
    1. 基于 RDKit 的氨基酸序列转换为 SMILES
    2. 基于 RDKit 的肽和核酸序列转换分子 Mol 对象
    3. 多肽 HELM 字符串格式与分子 Mol 格式间的转换
    4. 从 ChEMBL 数据库提取大分子 HELM 单体(XML 转换为 DataFrame 并搜索部分结构)
    5. 基于RDKit的药效团特征与可视化
  3. 【基于RDKit的药效团处理】
    1. RDKit 中的药效团特征
    2. RDKit:可视化药效团(Pharmacophore)
    3. RDKit | 基于 RDKit 从分子中提取 3D 药效团特征
    4. RDKit | 基于 RDKit 计算 3D 药效团指纹
  4. 【基于RDKit的骨架 (Scaffold)】
    1. RDKit | 基于 RDKit 操纵分子结构(骨架转换)
    2. RDKit:化合物骨架分析(基于 Python3)
  5. 【基于RDKit的片段 (Fragments)处理】
    1. RDKit 中的 RECAP 进行分子裂解
    2. RDKit:基于 RECAP 生成片段
    3. RDKit | 可视化重要片段
    4. RDKit | 基于片段的分子生成(骨架 A + 骨架 B)
    5. RDKit | 基于多片段的分子生成(骨架 A + 骨架 B + 骨架 C)

激酶-Kinase相似性学习

  1. 激酶基本理论介绍
  2. Kinase相似性:序列
  3. Kinase相似性:Kinase口袋(KiSSim指纹)
  4. Kinase相似性:交互指纹
  5. Kinase相似性:配体配置文件
  6. Kinase相似性:比较不同的view

基于序列的蛋白质属性预测

  1. 多重序列对比
  2. 基于蛋白质序列的深度学习和机器学习任务
  3. 预测突变对TEM-1β-内酰胺酶蛋白的影响
  4. 基于蛋白质的二级结构预测残基的属性
  5. 通过蛋白质的溶化温度预测蛋白质的稳定性

基于结构的蛋白质属性预测

  1. 蛋白质结构数据处理
  2. 基于RDKit的蛋白质动态图构建
  3. 基于几何感知关系图神经网络(GearNet)及其边缘消息传递的扩展(GearNet-Edge)的蛋白质结构表示模型

蛋白质-配体相互作用预测PLI

  1. 结合位点相似性和脱靶预测
  2. 结合位点预测
  3. 蛋白质-配体对接
  4. 蛋白质-配体相互作用
  5. NGLView高级教程
  6. 分子动力学模拟
  7. 分析分子动力学模拟
  8. 基于图神经网络的蛋白质-配体相互作用预测(分类任务)
  9. 基于机器学习的分子对接来预测蛋白质-配体的结合亲和力(回归任务)

在这里插入图片描述

这篇关于计算机辅助药物设计AIDD-小分子-蛋白质|分子生成|蛋白质配体相互作用预测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/455387

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

pdfmake生成pdf的使用

实际项目中有时会有根据填写的表单数据或者其他格式的数据,将数据自动填充到pdf文件中根据固定模板生成pdf文件的需求 文章目录 利用pdfmake生成pdf文件1.下载安装pdfmake第三方包2.封装生成pdf文件的共用配置3.生成pdf文件的文件模板内容4.调用方法生成pdf 利用pdfmake生成pdf文件 1.下载安装pdfmake第三方包 npm i pdfma

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

poj 1287 Networking(prim or kruscal最小生成树)

题意给你点与点间距离,求最小生成树。 注意点是,两点之间可能有不同的路,输入的时候选择最小的,和之前有道最短路WA的题目类似。 prim代码: #include<stdio.h>const int MaxN = 51;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int P;int prim(){bool vis[MaxN];

poj 2349 Arctic Network uva 10369(prim or kruscal最小生成树)

题目很麻烦,因为不熟悉最小生成树的算法调试了好久。 感觉网上的题目解释都没说得很清楚,不适合新手。自己写一个。 题意:给你点的坐标,然后两点间可以有两种方式来通信:第一种是卫星通信,第二种是无线电通信。 卫星通信:任何两个有卫星频道的点间都可以直接建立连接,与点间的距离无关; 无线电通信:两个点之间的距离不能超过D,无线电收发器的功率越大,D越大,越昂贵。 计算无线电收发器D

hdu 1102 uva 10397(最小生成树prim)

hdu 1102: 题意: 给一个邻接矩阵,给一些村庄间已经修的路,问最小生成树。 解析: 把已经修的路的权值改为0,套个prim()。 注意prim 最外层循坏为n-1。 代码: #include <iostream>#include <cstdio>#include <cstdlib>#include <algorithm>#include <cstri

【生成模型系列(初级)】嵌入(Embedding)方程——自然语言处理的数学灵魂【通俗理解】

【通俗理解】嵌入(Embedding)方程——自然语言处理的数学灵魂 关键词提炼 #嵌入方程 #自然语言处理 #词向量 #机器学习 #神经网络 #向量空间模型 #Siri #Google翻译 #AlexNet 第一节:嵌入方程的类比与核心概念【尽可能通俗】 嵌入方程可以被看作是自然语言处理中的“翻译机”,它将文本中的单词或短语转换成计算机能够理解的数学形式,即向量。 正如翻译机将一种语言

poj 3723 kruscal,反边取最大生成树。

题意: 需要征募女兵N人,男兵M人。 每征募一个人需要花费10000美元,但是如果已经招募的人中有一些关系亲密的人,那么可以少花一些钱。 给出若干的男女之间的1~9999之间的亲密关系度,征募某个人的费用是10000 - (已经征募的人中和自己的亲密度的最大值)。 要求通过适当的招募顺序使得征募所有人的费用最小。 解析: 先设想无向图,在征募某个人a时,如果使用了a和b之间的关系

怎么让1台电脑共享给7人同时流畅设计

在当今的创意设计与数字内容生产领域,图形工作站以其强大的计算能力、专业的图形处理能力和稳定的系统性能,成为了众多设计师、动画师、视频编辑师等创意工作者的必备工具。 设计团队面临资源有限,比如只有一台高性能电脑时,如何高效地让七人同时流畅地进行设计工作,便成为了一个亟待解决的问题。 一、硬件升级与配置 1.高性能处理器(CPU):选择多核、高线程的处理器,例如Intel的至强系列或AMD的Ry