Python---函数递归---练习:猴子吃桃问题(本文以递归算法 解法为主)

本文主要是介绍Python---函数递归---练习:猴子吃桃问题(本文以递归算法 解法为主),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

相关链接:Python---函数递归---练习:斐波那契数列(本文以递归算法为主)-CSDN博客

案例:猴子吃桃问题

猴子吃桃问题。猴子第1天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个。第2天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半另加一个。到第10天早上想再吃时,就只剩下一个桃子了。求第1天共摘了多少个桃子

思考:一步步来

第一步:确定函数主要要完成什么功能,需要传递哪些参数,确认调用方式


def f(n):
    # 编写递归代码
    
# 调用f函数
print(f(1))


第二步:编写递归的结束条件(出口)


# 第一步:确定函数功能
def f(n):
    # 第二步:编写递归结束条件(出口)
    if n == 10:
        return 1

# 调用函数
print(f(1))


第三步:找出与这个问题相等的等式关系

看要求

猴子第1天摘下若干个桃子,当即吃了一半,还不过瘾,又多吃了一个。第2天早上又将剩下的桃子吃掉一半,又多吃了一个。以后每天早上都吃了前一天剩下的一半另加一个。到第10天早上想再吃时,就只剩下一个桃子了。求第1天共摘了多少个桃子。

求桃子的剩余数量?假设法:假设有10个桃子---------自己开始列举

第1天,10个桃子吃一半,10/2 = 5 + 1 = 6  #  + 1 是 还不过瘾又多吃了一个,总共吃6个,剩4个

第2天,4个桃子吃一半,4/2 = 2 + 1 = 3  #  + 1 是 还不过瘾又多吃了一个,总共吃3个,剩1个

第3天,再想吃剩1个

第n天,总剩余桃子的数量 = (第(n+1)天桃子的剩余桃子的数量 + 1) * 2

# 这里是反推,计算桃子数量-----每天剩余桃子的总数,都是之后一天桃子的总数。

求总的第1天共摘了多少个桃子,那么就可以从第二天初始桃子的总数进行反推,是一开始是一半,除以2,那么就乘以2,再加上1---------就是第一天桃子的总数。

可以把这些情景,当做自己买水果,代入思考,就能很快假设出来。


# 第一步:确定函数功能
def f(n):# 第二步:编写递归结束条件(出口)if n == 10:return 1# 第三步:寻找与这个问题相似的等价公式return (f(n+1) + 1) * 2# 调用函数
print(f(8)) 

这篇关于Python---函数递归---练习:猴子吃桃问题(本文以递归算法 解法为主)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/452530

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

好题——hdu2522(小数问题:求1/n的第一个循环节)

好喜欢这题,第一次做小数问题,一开始真心没思路,然后参考了网上的一些资料。 知识点***********************************无限不循环小数即无理数,不能写作两整数之比*****************************(一开始没想到,小学没学好) 此题1/n肯定是一个有限循环小数,了解这些后就能做此题了。 按照除法的机制,用一个函数表示出来就可以了,代码如下

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal