GDP越高就越幸福吗?用Python分析《世界幸福指数报告》后我们发现…

2023-12-03 23:08

本文主要是介绍GDP越高就越幸福吗?用Python分析《世界幸福指数报告》后我们发现…,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

【导读】

今天教大家用Python分析《世界幸福指数报告》。公众号后台,回复关键字“0922”获取完整数据。

《世界幸福指数报告》是对全球幸福状况的一次具有里程碑意义的调查。

民意测验机构盖洛普从2012年起,每年都会在联合国计划下发布《世界幸福指数报告》,报告会综合两年内150多个国家的国民对其所处社会、城市和自然环境等因素进行评价后,再根据他们所感知的幸福程度对国家进行排名。

《世界幸福指数报告》的编撰主要依赖于对150多个国家的1000多人提出一个简单的主观性问题:“如果有一个从0分到10分的阶梯,顶层的10分代表你可能得到的最佳生活,底层的0分代表你可能得到的最差生活。你觉得你现在在哪一层?”

那么哪个国家在总体幸福指数上排名最高?

哪些因素对幸福指数的影响最大?

今天我们就带你用Python来聊一聊。

01数据理解

关键字段含义解释:

  1. rank:幸福指数排名
  2. region:国家
  3. happiness:幸福指数得分
  4. gdp_per_capita:GDP(人均国内生产总值)
  5. healthy_life_expectancy:健康预期寿命
  6. freedom_to_life_choise:自由权
  7. generosity:慷慨程度
  8. year:年份
  9. corruption_perceptions:清廉指数
  10. social_support:社会支持(客观上物质上的援助和直接服务;主观上指个体感到在社会中被尊重、被支持和被理解的情绪体验和满意程度。)

02数据导入和数据整理

首先导入所需包。

数据整理

import numpy as np
import pandas as pd

可视化

import matplotlib.pyplot as plt
import seaborn as sns
import plotly as py
import plotly.graph_objs as go
import plotly.express as px
from plotly.offline import init_notebook_mode, iplot, plot

init_notebook_mode(connected=True)
plt.style.use(‘seaborn’)

读入数据

df_2015 = pd.read_csv(’./deal_data/2015.csv’)
df_2016 = pd.read_csv(’./deal_data/2016.csv’)
df_2017 = pd.read_csv(’./deal_data/2017.csv’)
df_2018 = pd.read_csv(’./deal_data/2018.csv’)
df_2019 = pd.read_csv(’./deal_data/2019.csv’)

新增列-年份

df_2015[“year”] = str(2015)
df_2016[“year”] = str(2016)
df_2017[“year”] = str(2017)
df_2018[“year”] = str(2018)
df_2019[“year”] = str(2019)

合并数据

df_all = df_2015.append([df_2016, df_2017, df_2018, df_2019], sort=False)
df_all.drop(‘Unnamed: 0’, axis=1, inplace=True)
df_all.head()

print(df_2015.shape, df_2016.shape, df_2017.shape, df_2018.shape, df_2019.shape)
(158, 10) (157, 10) (155, 10) (156, 11) (156, 11)
df_all.info()
<class ‘pandas.core.frame.DataFrame’>
Int64Index: 782 entries, 0 to 155
Data columns (total 10 columns):
region 782 non-null object
rank 782 non-null int64
happiness 782 non-null float64
gdp_per_capita 782 non-null float64
healthy_life_expectancy 782 non-null float64
freedom_to_life_choise 782 non-null float64
corruption_perceptions 781 non-null float64
generosity 782 non-null float64
year 782 non-null object
social_support 312 non-null float64
dtypes: float64(7), int64(1), object(2)
memory usage: 67.2+ KB
03数据可视化

2019世界幸福地图

整体来看,北欧的国家幸福指数较高,如冰岛、丹麦、挪威、芬兰;东非和西非的国家幸福指数较低,如多哥、布隆迪、卢旺达和坦桑尼亚。

代码展示:

data = dict(type = ‘choropleth’,
locations = df_2019[‘region’],
locationmode = ‘country names’,
colorscale = ‘RdYlGn’,
z = df_2019[‘happiness’],
text = df_2019[‘region’],
colorbar = {‘title’:‘Happiness’})

layout = dict(title = ‘Geographical Visualization of Happiness Score in 2019’,
geo = dict(showframe = True, projection = {‘type’: ‘azimuthal equal area’}))

choromap3 = go.Figure(data = [data], layout=layout)
plot(choromap3, filename=’./html/世界幸福地图.html’)
2019世界幸福国家排行Top10

2019年报告,芬兰连续两年被评为“全球最幸福国家”。丹麦、挪威、冰岛、荷兰进入前五名,对比2018年报告,中国从86名下降到93名。

代码展示:

合并数据

rank_top10 = df_2019.head(10)[[‘rank’, ‘region’, ‘happiness’]]
last_top10 = df_2019.tail(10)[[‘rank’, ‘region’, ‘happiness’]]
rank_concat = pd.concat([rank_top10, last_top10])

条形图

fig = px.bar(rank_concat,
x=“region”,
y=“happiness”,
color=“region”,
title=“World’s happiest and least happy countries in 2019”)

plot(fig, filename=’./html/2019世界幸福国家排行Top10和Last10.html’)
幸福指数相关性

我们可以得出以下结论:

从影响因素相关性热力图可以看出,在影响幸福得分的因素中,GDP、社会支持、健康预期寿命呈现高度相关,自由权呈现中度相关,国家的廉政水平呈现低度相关,慷慨程度则呈现极低的相关性;

GDP与健康预期寿命、社会支持之间存在高度相关。说明GDP高的国家,医疗水平和社会福利较为完善,人民的预期寿命也会越高;

健康预期寿命与社会支持之间存在中度相关性。

以下分别观察各个因素的影响程度。

GDP和幸福得分

人均GDP与幸福得分呈高度线性正相关关系,GDP越高的国家,幸福水平相对越高。

代码展示:

散点图

fig = px.scatter(df_all, x=‘gdp_per_capita’,
y=‘happiness’,
facet_row=‘year’,
color=‘year’,
trendline=‘ols’
)
fig.update_layout(height=800, title_text=‘GDP per capita and Happiness Score’)
plot(fig, filename=’./html/GDP和幸福得分.html’)
健康预期寿命和幸福得分

健康预期寿命与幸福得分呈高度线性正相关关系,健康预期寿命越高的国家,幸福水平相对越高。

代码展示:

散点图
fig = px.scatter(df_all, x=‘healthy_life_expectancy’,
y=‘happiness’,
facet_row=‘year’,
color=‘year’,
trendline=‘ols’
)
fig.update_layout(height=800, title_text=‘Healthy Life Expecancy and Happiness Score’)
plot(fig, filename=’./html/健康预期寿命和幸福得分.html’)
代码展示:

fig = px.scatter(df_all,
x=‘gdp_per_capita’,
y=‘happiness’,
animation_frame=‘year’,
animation_group=‘region’,
size=‘rank’,
color=‘region’,
hover_name=‘region’,
trendline=‘ols’
)
fig.update_layout(title_text=‘Happiness Rank vs GDP per Capita’)
plot(fig, filename=’./html/GDP和幸福水平动态图展示.html’)
代码展示:

fig = px.scatter(df_all,
x=‘healthy_life_expectancy’,
y=‘happiness’,
animation_frame=‘year’,
animation_group=‘region’,
size=‘rank’,
color=‘region’,
hover_name=‘region’,
trendline=‘ols’
)
fig.update_layout(title_text=‘Happiness Rank vs healthy_life_expectancy’)
plot(fig, filename=’./html/健康预期寿命和幸福水平动态图展示.html’)
04数据建模

我们使用线性回归进行建立一个基准模型,首先筛选一下建模变量,并删除空值记录。

sel_cols = [‘happiness’, ‘gdp_per_capita’, ‘healthy_life_expectancy’,
‘freedom_to_life_choise’, ‘corruption_perceptions’, ‘generosity’]

重置索引

df_model.index = range(df_model.shape[0])
df_model = df_all[sel_cols]

删除空值

df_model = df_model.dropna()
df_model.head()

from statsmodels.formula.api import ols

建立多元线性回归模型

lm_m = ols(formula=‘happiness ~ gdp_per_capita + healthy_life_expectancy + freedom_to_life_choise + corruption_perceptions + generosity’,
data=df_model).fit()
lm_m.summary()

模型的R-squared=0.744,拟合效果尚可,根据模型的参数可知:

变量重要性排序为:gdp_per_capita、freedom_to_life_choise、healthy_life_expectancy、corruption_perceptions、generosity
控制其他变量不变的情况下,GDP指数每增加一个单位,幸福指数增加1.32个单位,健康预期寿命指数每增加一个单位,幸福指数增加1.21个单位。

比较预测值和真实值的分布:

df_pred = pd.concat([df_model[‘happiness’], y_pred], axis=1)
df_pred.columns = [‘y_true’, ‘y_pred’]

散点图

fig = px.scatter(df_pred, x=‘y_true’, y=‘y_pred’, trendline=‘ols’)
fig.update_layout(title=‘Resid of OLS Regression’)
plot(fig, filename=’./html/预测值和真实值分布图.html’)
以下为模型残差分布图。

fig = px.histogram(x=lm_m.resid)
fig.update_layout(title=‘Resid of OLS Regression’)
plot(fig, filename=’./html/多元线性回归残差分布图.html’)
代码下载:https://edu.cda.cn/group/19/thread/279

这篇关于GDP越高就越幸福吗?用Python分析《世界幸福指数报告》后我们发现…的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/451205

相关文章

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

揭秘世界上那些同时横跨两大洲的国家

我们在《世界人口过亿的一级行政区分布》盘点全球是那些人口过亿的一级行政区。 现在我们介绍五个横跨两州的国家,并整理七大洲和这些国家的KML矢量数据分析分享给大家,如果你需要这些数据,请在文末查看领取方式。 世界上横跨两大洲的国家 地球被分为七个大洲分别是亚洲、欧洲、北美洲、南美洲、非洲、大洋洲和南极洲。 七大洲示意图 其中,南极洲是无人居住的大陆,而其他六个大洲则孕育了众多国家和

【专题】2024飞行汽车技术全景报告合集PDF分享(附原数据表)

原文链接: https://tecdat.cn/?p=37628 6月16日,小鹏汇天旅航者X2在北京大兴国际机场临空经济区完成首飞,这也是小鹏汇天的产品在京津冀地区进行的首次飞行。小鹏汇天方面还表示,公司准备量产,并计划今年四季度开启预售小鹏汇天分体式飞行汽车,探索分体式飞行汽车城际通勤。阅读原文,获取专题报告合集全文,解锁文末271份飞行汽车相关行业研究报告。 据悉,业内人士对飞行汽车行业

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

nudepy,一个有趣的 Python 库!

更多资料获取 📚 个人网站:ipengtao.com 大家好,今天为大家分享一个有趣的 Python 库 - nudepy。 Github地址:https://github.com/hhatto/nude.py 在图像处理和计算机视觉应用中,检测图像中的不适当内容(例如裸露图像)是一个重要的任务。nudepy 是一个基于 Python 的库,专门用于检测图像中的不适当内容。该

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者