pytorch 中的dim 的作用范围

2023-12-03 19:04
文章标签 作用 范围 pytorch dim

本文主要是介绍pytorch 中的dim 的作用范围,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1. 二维矩阵时

不同的运算, dim 的作用域都是一样的思想;

当数据是二维矩阵时, 可以按照下面的思想理解

对于矩阵:
dim=0 按列操作(沿列向下)。
dim=1 按行操作(跨行)。

解释如下:

dim=0 :这是指张量的第一个维度,通常被视为行。如果您沿此维度应用函数,它将按列处理数据。换句话说,该函数独立地应用于每一列。

dim=1 :这是指张量的第二维,通常被视为列。当您沿此维度应用函数时,它会按行处理数据。也就是说,该函数独立地应用于每一行。

1.1 求和

>> a = torch.Tensor([[1,2,3], [4,5,6]])
>> print(a.shape)
torch.Size([2, 3])>> print(torch.sum(a, dim=0))
tensor([5., 7., 9.])>> print(torch.sum(a, dim=1))
tensor([ 6., 15.])

1.2 softmax

dim = 0) #对每一列进行softmax;
dim =1) #对每一行进行softmax;

import torchimport torch.nn.functional as Fx= torch.Tensor( [ [1,2,3,4],[1,2,3,4],[1,2,3,4]])y1= F.softmax(x, dim = 0) #对每一列进行softmax
print(y1)y2 = F.softmax(x,dim =1) #对每一行进行softmax
print(y2)x1 = torch.Tensor([1,2,3,4])
print(x1)y3 = F.softmax(x1,dim=0) #一维时使用dim=0,使用dim=1报错
print(y3)
(deeplearning) userdeMBP:pytorch user$ python test.py 
tensor([[0.3333, 0.3333, 0.3333, 0.3333],[0.3333, 0.3333, 0.3333, 0.3333],[0.3333, 0.3333, 0.3333, 0.3333]])
tensor([[0.0321, 0.0871, 0.2369, 0.6439],[0.0321, 0.0871, 0.2369, 0.6439],[0.0321, 0.0871, 0.2369, 0.6439]])
tensor([1., 2., 3., 4.])
tensor([0.0321, 0.0871, 0.2369, 0.6439])

2. 三维张量时

当dim=0时, 是对每一维度相同位置的数值进行softmax运算,和为1
当dim=1时, 是对某一维度的列进行softmax运算,和为1
当dim=2时, 是对某一维度的行进行softmax运算,和为1

import torch 
import torch.nn.functional as F 
input= torch.randn(2,2,3))
print(input)

在这里插入图片描述
dim= 0,
在这里插入图片描述

dim=1,
在这里插入图片描述

dim =2

在这里插入图片描述

这篇关于pytorch 中的dim 的作用范围的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/450529

相关文章

MyBatis的配置对象Configuration作用及说明

《MyBatis的配置对象Configuration作用及说明》MyBatis的Configuration对象是MyBatis的核心配置对象,它包含了MyBatis运行时所需的几乎所有配置信息,这个对... 目录MyBATis配置对象Configuration作用Configuration 对象的主要作用C

MySQL表锁、页面锁和行锁的作用及其优缺点对比分析

《MySQL表锁、页面锁和行锁的作用及其优缺点对比分析》MySQL中的表锁、页面锁和行锁各有特点,适用于不同的场景,表锁锁定整个表,适用于批量操作和MyISAM存储引擎,页面锁锁定数据页,适用于旧版本... 目录1. 表锁(Table Lock)2. 页面锁(Page Lock)3. 行锁(Row Lock

从零教你安装pytorch并在pycharm中使用

《从零教你安装pytorch并在pycharm中使用》本文详细介绍了如何使用Anaconda包管理工具创建虚拟环境,并安装CUDA加速平台和PyTorch库,同时在PyCharm中配置和使用PyTor... 目录背景介绍安装Anaconda安装CUDA安装pytorch报错解决——fbgemm.dll连接p

pycharm远程连接服务器运行pytorch的过程详解

《pycharm远程连接服务器运行pytorch的过程详解》:本文主要介绍在Linux环境下使用Anaconda管理不同版本的Python环境,并通过PyCharm远程连接服务器来运行PyTorc... 目录linux部署pytorch背景介绍Anaconda安装Linux安装pytorch虚拟环境安装cu

使用Python合并 Excel单元格指定行列或单元格范围

《使用Python合并Excel单元格指定行列或单元格范围》合并Excel单元格是Excel数据处理和表格设计中的一项常用操作,本文将介绍如何通过Python合并Excel中的指定行列或单... 目录python Excel库安装Python合并Excel 中的指定行Python合并Excel 中的指定列P

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Android fill_parent、match_parent、wrap_content三者的作用及区别

这三个属性都是用来适应视图的水平或者垂直大小,以视图的内容或尺寸为基础的布局,比精确的指定视图的范围更加方便。 1、fill_parent 设置一个视图的布局为fill_parent将强制性的使视图扩展至它父元素的大小 2、match_parent 和fill_parent一样,从字面上的意思match_parent更贴切一些,于是从2.2开始,两个属性都可以使用,但2.3版本以后的建议使

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令

maven发布项目到私服-snapshot快照库和release发布库的区别和作用及maven常用命令 在日常的工作中由于各种原因,会出现这样一种情况,某些项目并没有打包至mvnrepository。如果采用原始直接打包放到lib目录的方式进行处理,便对项目的管理带来一些不必要的麻烦。例如版本升级后需要重新打包并,替换原有jar包等等一些额外的工作量和麻烦。为了避免这些不必要的麻烦,通常我们

未来工作趋势:零工小程序在共享经济中的作用

经济在不断发展的同时,科技也在飞速发展。零工经济作为一种新兴的工作模式,正在全球范围内迅速崛起。特别是在中国,随着数字经济的蓬勃发展和共享经济模式的深入推广,零工小程序在促进就业、提升资源利用效率方面显示出了巨大的潜力和价值。 一、零工经济的定义及现状 零工经济是指通过临时性、自由职业或项目制的工作形式,利用互联网平台快速匹配供需双方的新型经济模式。这种模式打破了传统全职工作的界限,为劳动

Science|癌症中三级淋巴结构的免疫调节作用与治疗潜力|顶刊精析·24-09-08

小罗碎碎念 Science文献精析 今天精析的这一篇综述,于2022-01-07发表于Science,主要讨论了癌症中的三级淋巴结构(Tertiary Lymphoid Structures, TLS)及其在肿瘤免疫反应中的作用。 作者类型作者姓名单位名称(中文)通讯作者介绍第一作者Ton N. Schumacher荷兰癌症研究所通讯作者之一通讯作者Daniela S. Thomm