最小生成树(Minimum Spanning Tree)及生成MST的几种方法

2023-12-03 03:36

本文主要是介绍最小生成树(Minimum Spanning Tree)及生成MST的几种方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

最小生成树 (Minimum Spanning Tree)

最小生成树是图论领域的一个基本概念,适用于加权连通图,其中包括若干顶点(节点)以及连接这些顶点的边(边可以有权重)。在一个加权连通图中,生成树(Spanning Tree)是一个无环子图,它包含图中的所有顶点,并且用最少数量的边将它们连接起来。注意,无环是指子图中不存在任何边的闭环,最少数量的边意味着任意两个顶点之间有且仅有一条路径相互到达。

“最小生成树”这一术语的“最小”指的是在所有可能的生成树中,边的权重之和最小的那一个。在实际应用中,最小生成树可以帮助找到在网络设计、电路设计等方面成本最低的方案。

我们来举一个简单的例子。假设有四个城市,每两个城市之间可以修建道路相连,不同的道路成本不同,现在的目标是花最少的成本将这四个城市全部连通。最小生成树算法即是解决此类问题的有效工具。

生成最小生成树的算法

接下来,我们将介绍四个生成最小生成树的经典算法,它们分别是克鲁斯卡尔(Kruskal)算法和普里姆(Prim)算法,以及相对少见的Borůvka算法和Sollin算法。

1. 克鲁斯卡尔(Kruskal)算法

克鲁斯卡尔算法是基于边的贪心策略。它的基本思想是按照边权重从小到大的顺序选择边,从而构造最小生成树。选取的边必须满足添加后不形成环路。

伪代码:
KRUSKAL(G):A = ∅                            // A将存储最小生成树的边对于G中的每个顶点v:MAKE-SET(v)将G中的所有边按权重由低到高排序对于每条边(u, v)按序做如下操作:if FIND-SET(u) ≠ FIND-SET(v):   // 检查u和v是否在树的不同分量中A = A ∪ {(u, v)}               // 将边(u, v)加入到A中UNION(u, v)                    // 将u和v的分量合并返回A

其中 MAKE-SET、FIND-SET 和 UNION 是不相交集合数据结构的操作,用于维护和查询顶点间是否存在环路。

2. 普里姆(Prim)算法

普里姆算法是基于点的贪心策略。在这个算法中,我们从任选的一个顶点开始构建最小生成树,逐步扩大树的范围,每一步都添加一条连接树与非树顶点且权重最小的边。

伪代码:
PRIM(G, w, r):                     // G是图,w是权重函数,r是开始顶点for each u ∈ G.V:u.key = ∞                      // 初始化所有顶点的键值为无穷大u.π = NIL                       // π属性用来记录最小生成树的父节点r.key = 0Q = G.Vwhile Q ≠ ∅:u = EXTRACT-MIN(Q)             // 从Q中取出键值最小的顶点ufor each v ∈ G.Adj[u]:         // 遍历u的所有邻居vif v ∈ Q and w(u, v) < v.key:v.π = u                     // 更新v的父节点为uv.key = w(u, v)             // 更新v的键值为u与v之间边的权重

在Prim算法中,EXTRACT-MIN(Q)是优先队列的操作,它用于选择权重最小的边,而G.Adj[u]表示图中与顶点u相邻的所有顶点集合。

3. Borůvka算法

Borůvka算法是最早的最小生成树算法之一,适用于稀疏图。算法的每个阶段为图中的每个连通分量选择一条权重最小的边,并将这些边添加到生成树中,直到图变为连通的。

伪代码:
BORUVKA(G):forest = each vertex in G is a separate treewhile there is more than one tree in the forest:for each tree T in the forest:find the smallest edge connecting T to another treeadd this edge to the forestreturn the edges added to the forest
4. Sollin算法

Sollin算法(也被称为Borůvka的改进版本)同样适用于稀疏图,其基本想法是在每个阶段找到每个连通分量键值最小的边,并将它们加入生成树,像Borůvka算法一样重复这个过程,直到所有分量合并到一起。

伪代码:
SOLLIN(G):Initialize a forest F with each vertex in G as a separate treewhile F has more than one tree dofor each tree T in the forest F dolet e = the lightest edge with one end in Tif there is no edge chosen for T or e is lighter than the already chosen edgechoose e for Tfor each edge e chosen in this round doif e connects two different trees thenadd e to the forest Freturn the forest F as the minimum spanning tree

在Sollin算法中,检查加入边e后是否会造成环路的操作通过查询树的根节点来实现,保证了每次迭代加入的边一定属于不同的连通分量。

如果你想更深入地了解人工智能的其他方面,比如机器学习、深度学习、自然语言处理等等,也可以点击这个链接,我按照如下图所示的学习路线为大家整理了100多G的学习资源,基本涵盖了人工智能学习的所有内容,包括了目前人工智能领域最新顶会论文合集和丰富详细的项目实战资料,可以帮助你入门和进阶。

链接: 人工智能交流群(大量资料)

在这里插入图片描述

这篇关于最小生成树(Minimum Spanning Tree)及生成MST的几种方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/447938

相关文章

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

Go路由注册方法详解

《Go路由注册方法详解》Go语言中,http.NewServeMux()和http.HandleFunc()是两种不同的路由注册方式,前者创建独立的ServeMux实例,适合模块化和分层路由,灵活性高... 目录Go路由注册方法1. 路由注册的方式2. 路由器的独立性3. 灵活性4. 启动服务器的方式5.

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

浅析如何使用Swagger生成带权限控制的API文档

《浅析如何使用Swagger生成带权限控制的API文档》当涉及到权限控制时,如何生成既安全又详细的API文档就成了一个关键问题,所以这篇文章小编就来和大家好好聊聊如何用Swagger来生成带有... 目录准备工作配置 Swagger权限控制给 API 加上权限注解查看文档注意事项在咱们的开发工作里,API

JS 实现复制到剪贴板的几种方式小结

《JS实现复制到剪贴板的几种方式小结》本文主要介绍了JS实现复制到剪贴板的几种方式小结,包括ClipboardAPI和document.execCommand这两种方法,具有一定的参考价值,感兴趣的... 目录一、Clipboard API相关属性方法二、document.execCommand优点:缺点:

Spring排序机制之接口与注解的使用方法

《Spring排序机制之接口与注解的使用方法》本文介绍了Spring中多种排序机制,包括Ordered接口、PriorityOrdered接口、@Order注解和@Priority注解,提供了详细示例... 目录一、Spring 排序的需求场景二、Spring 中的排序机制1、Ordered 接口2、Pri

Idea实现接口的方法上无法添加@Override注解的解决方案

《Idea实现接口的方法上无法添加@Override注解的解决方案》文章介绍了在IDEA中实现接口方法时无法添加@Override注解的问题及其解决方法,主要步骤包括更改项目结构中的Languagel... 目录Idea实现接China编程口的方法上无法添加@javascriptOverride注解错误原因解决方

MySql死锁怎么排查的方法实现

《MySql死锁怎么排查的方法实现》本文主要介绍了MySql死锁怎么排查的方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习吧... 目录前言一、死锁排查方法1. 查看死锁日志方法 1:启用死锁日志输出方法 2:检查 mysql 错误

Java通过反射获取方法参数名的方式小结

《Java通过反射获取方法参数名的方式小结》这篇文章主要为大家详细介绍了Java如何通过反射获取方法参数名的方式,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1、前言2、解决方式方式2.1: 添加编译参数配置 -parameters方式2.2: 使用Spring的内部工具类 -

c++中std::placeholders的使用方法

《c++中std::placeholders的使用方法》std::placeholders是C++标准库中的一个工具,用于在函数对象绑定时创建占位符,本文就来详细的介绍一下,具有一定的参考价值,感兴... 目录1. 基本概念2. 使用场景3. 示例示例 1:部分参数绑定示例 2:参数重排序4. 注意事项5.