NLP系列 1. IMDB和THUCNews数据集数据集的探索

2023-12-02 21:08

本文主要是介绍NLP系列 1. IMDB和THUCNews数据集数据集的探索,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 探索IMDB数据集和THUCNews数据集
    • IMDB的探索
    • THUCNews数据集的探索
      • 数据集来源
      • 数据集介绍

探索IMDB数据集和THUCNews数据集

IMDB的探索

由keras直接加载数据集,再将数据集中已经预处理过的代表词的数字转换回字词
代码见 https://github.com/sherpahu/NLP_practice/blob/master/Task1/imdb.ipynb

主要参考:https://tensorflow.google.cn/tutorials/keras/basic_text_classification

import keras
imdb=keras.datasets.imdb
Using TensorFlow backend.
(train_data,train_labels),(test_data,test_labels)=imdb.load_data(num_words=10000)
#num_words=10000表示只保留训练数据集中的最常见的10000个单词,舍弃低频词。防止向量的数据过大,并且保留最有用的信息
train_data[0]
[1,14,22,16,43,...16,5345,19,178,32]

imdb里面是已经处理好的数据,每一个数字代表一个单词,

train_labels[0]
1
len(train_data),len(train_labels),len(test_data),len(test_labels)
(25000, 25000, 25000, 25000)
import pandas as pd
series=pd.Series(train_labels)
series.value_counts()
1    12500
0    12500
dtype: int64

0代表负面评价,1代表正面
由上面的train_labels的统计可以看出,正面、负面各占一半下面尝试将数字代表的评价转化为原文

# A dictionary mapping words to an integer index
word_index=imdb.get_word_index()# The first indices are reserved
word_index = {k:(v+3) for k,v in word_index.items()}
word_index["<PAD>"] = 0
word_index["<START>"] = 1
word_index["<UNK>"] = 2  # unknown
word_index["<UNUSED>"] = 3index2word=dict([(value,key) for (key,value) in word_index.items()])
def decode_review(text):return ' '.join([index2word.get(i,'?') for i in text])
decode_review(train_data[0])
"<START> this film was just brilliant casting location scenery story direction everyone's really suited the part they played and you could just imagine being there robert <UNK> is an amazing actor and now the same being director <UNK> father came from the same scottish island as myself so i loved the fact there was a real connection with this film the witty remarks throughout the film were great it was just brilliant so much that i bought the film as soon as it was released for <UNK> and would recommend it to everyone to watch and the fly fishing was amazing really cried at the end it was so sad and you know what they say if you cry at a film it must have been good and this definitely was also <UNK> to the two little boy's that played the <UNK> of norman and paul they were just brilliant children are often left out of the <UNK> list i think because the stars that play them all grown up are such a big profile for the whole film but these children are amazing and should be praised for what they have done don't you think the whole story was so lovely because it was true and was someone's life after all that was shared with us all"

THUCNews数据集的探索

数据集来源

完整数据集: http://thuctc.thunlp.org/#中文文本分类数据集THUCNews

子数据集: 链接: https://pan.baidu.com/s/1hugrfRu 密码: qfud

子数据集来源:https://github.com/gaussic/text-classification-cnn-rnn

数据集划分如下:

  • 训练集: 5000*10
  • 验证集: 500*10
  • 测试集: 1000*10

从原数据集生成子集的过程请参看helper下的两个脚本。其中,copy_data.sh用于从每个分类拷贝6500个文件,cnews_group.py用于将多个文件整合到一个文件中。执行该文件后,得到三个数据文件:

  • cnews.train.txt: 训练集(50000条)
  • cnews.val.txt: 验证集(5000条)
  • cnews.test.txt: 测试集(10000条)

数据集介绍

THUCNews是根据新浪新闻RSS订阅频道2005~2011年间的历史数据筛选过滤生成,包含74万篇新闻文档(2.19 GB),均为UTF-8纯文本格式。我们在原始新浪新闻分类体系的基础上,重新整合划分出14个候选分类类别:财经、彩票、房产、股票、家居、教育、科技、社会、时尚、时政、体育、星座、游戏、娱乐。使用THUCTC工具包在此数据集上进行评测,准确率可以达到88.6%。

这篇关于NLP系列 1. IMDB和THUCNews数据集数据集的探索的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/446832

相关文章

MySQL 删除数据详解(最新整理)

《MySQL删除数据详解(最新整理)》:本文主要介绍MySQL删除数据的相关知识,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、前言二、mysql 中的三种删除方式1.DELETE语句✅ 基本语法: 示例:2.TRUNCATE语句✅ 基本语

MyBatisPlus如何优化千万级数据的CRUD

《MyBatisPlus如何优化千万级数据的CRUD》最近负责的一个项目,数据库表量级破千万,每次执行CRUD都像走钢丝,稍有不慎就引起数据库报警,本文就结合这个项目的实战经验,聊聊MyBatisPl... 目录背景一、MyBATis Plus 简介二、千万级数据的挑战三、优化 CRUD 的关键策略1. 查

python实现对数据公钥加密与私钥解密

《python实现对数据公钥加密与私钥解密》这篇文章主要为大家详细介绍了如何使用python实现对数据公钥加密与私钥解密,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录公钥私钥的生成使用公钥加密使用私钥解密公钥私钥的生成这一部分,使用python生成公钥与私钥,然后保存在两个文

mysql中的数据目录用法及说明

《mysql中的数据目录用法及说明》:本文主要介绍mysql中的数据目录用法及说明,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、背景2、版本3、数据目录4、总结1、背景安装mysql之后,在安装目录下会有一个data目录,我们创建的数据库、创建的表、插入的

Navicat数据表的数据添加,删除及使用sql完成数据的添加过程

《Navicat数据表的数据添加,删除及使用sql完成数据的添加过程》:本文主要介绍Navicat数据表的数据添加,删除及使用sql完成数据的添加过程,具有很好的参考价值,希望对大家有所帮助,如有... 目录Navicat数据表数据添加,删除及使用sql完成数据添加选中操作的表则出现如下界面,查看左下角从左

SpringBoot中4种数据水平分片策略

《SpringBoot中4种数据水平分片策略》数据水平分片作为一种水平扩展策略,通过将数据分散到多个物理节点上,有效解决了存储容量和性能瓶颈问题,下面小编就来和大家分享4种数据分片策略吧... 目录一、前言二、哈希分片2.1 原理2.2 SpringBoot实现2.3 优缺点分析2.4 适用场景三、范围分片

Redis分片集群、数据读写规则问题小结

《Redis分片集群、数据读写规则问题小结》本文介绍了Redis分片集群的原理,通过数据分片和哈希槽机制解决单机内存限制与写瓶颈问题,实现分布式存储和高并发处理,但存在通信开销大、维护复杂及对事务支持... 目录一、分片集群解android决的问题二、分片集群图解 分片集群特征如何解决的上述问题?(与哨兵模

浅析如何保证MySQL与Redis数据一致性

《浅析如何保证MySQL与Redis数据一致性》在互联网应用中,MySQL作为持久化存储引擎,Redis作为高性能缓存层,两者的组合能有效提升系统性能,下面我们来看看如何保证两者的数据一致性吧... 目录一、数据不一致性的根源1.1 典型不一致场景1.2 关键矛盾点二、一致性保障策略2.1 基础策略:更新数

Oracle 数据库数据操作如何精通 INSERT, UPDATE, DELETE

《Oracle数据库数据操作如何精通INSERT,UPDATE,DELETE》在Oracle数据库中,对表内数据进行增加、修改和删除操作是通过数据操作语言来完成的,下面给大家介绍Oracle数... 目录思维导图一、插入数据 (INSERT)1.1 插入单行数据,指定所有列的值语法:1.2 插入单行数据,指

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名