TRT3-trt-basic - 4 ONNX结构

2023-12-02 16:10
文章标签 结构 basic onnx trt trt3

本文主要是介绍TRT3-trt-basic - 4 ONNX结构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、前言:

1、ONNX的本质,是一种Protobuf格式文件
2、Protobuf则通过onnx-ml.proto编译得到onnx-ml.pb.h和onnx-ml.pb.cc或onnx_ml_pb2.py
3、然后用onnx-ml.pb.cc和代码来操作onnx模型文件,实现增删改
4、onnx-ml.proto则是描述onnx文件如何组成的,具有什么结构,他是操作onnx经常参照的东西

 

model:表示整个onnx的模型,包含图结构和解析器格式、opset版本、导出程序类型
model.graph:表示图结构,通常是我们netron看到的主要结构
model.graph.node:表示图中的所有节点,数组,例如conv、bn等节点就是在这里的,通过input、output表示节点之间的连接关系
model.graph.initializer:权重类的数据大都储存在这里
model.graph.input:整个模型的输入储存在这里,表明哪个节点是输入节点,shape是多少
model.graph.output:整个模型的输出储存在这里,表明哪个节点是输出节点,shape是多少

2、自制onnx

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.onnx
import osclass Model(torch.nn.Module):def __init__(self):super().__init__()self.conv = nn.Conv2d(1, 1, 3, padding=1)self.relu = nn.ReLU()self.conv.weight.data.fill_(1)self.conv.bias.data.fill_(0)def forward(self, x):x = self.conv(x)x = self.relu(x)return x# 这个包对应opset11的导出代码,如果想修改导出的细节,可以在这里修改代码
# import torch.onnx.symbolic_opset11
print("对应opset文件夹代码在这里:", os.path.dirname(torch.onnx.__file__))model = Model()
dummy = torch.zeros(1, 1, 3, 3)
torch.onnx.export(model, # 这里的args,是指输入给model的参数,需要传递tuple,因此用括号(dummy,), # 储存的文件路径"demo.onnx", # 打印详细信息verbose=True, # 为输入和输出节点指定名称,方便后面查看或者操作input_names=["image"], output_names=["output"], # 这里的opset,指,各类算子以何种方式导出,对应于symbolic_opset11opset_version=11, # 表示他有batch、height、width3个维度是动态的,在onnx中给其赋值为-1# 通常,我们只设置batch为动态,其他的避免动态dynamic_axes={"image": {0: "batch", 2: "height", 3: "width"},"output": {0: "batch", 2: "height", 3: "width"},}
)print("Done.!")

 

导出结果如图所示。

在read onnx.py 中我们可以发现 :

model = onnx.load("demo.onnx")#打印信息
print("==============node信息")
# print(helper.printable_graph(model.graph))
print(model)
node {input: "image"input: "conv.weight"input: "conv.bias"output: "input"name: "Conv_0"op_type: "Conv"attribute {name: "dilations"type: INTSints: 1ints: 1}

输入其实不止有image,而是有三个!

其中包括了image、weight、bias。

这一点和我们平时所经常熟知的一个箭头的单输入却是很不同。

3、创建onnx

import onnx # pip install onnx>=1.10.2
import onnx.helper as helper
import numpy as np# https://github.com/onnx/onnx/blob/v1.2.1/onnx/onnx-ml.protonodes = [helper.make_node(name="Conv_0",   # 节点名字,不要和op_type搞混了op_type="Conv",  # 节点的算子类型, 比如'Conv'、'Relu'、'Add'这类,详细可以参考onnx给出的算子列表inputs=["image", "conv.weight", "conv.bias"],  # 各个输入的名字,结点的输入包含:输入和算子的权重。必有输入X和权重W,偏置B可以作为可选。outputs=["3"],  pads=[1, 1, 1, 1], # 其他字符串为节点的属性,attributes在官网被明确的给出了,标注了default的属性具备默认值。group=1,dilations=[1, 1],kernel_shape=[3, 3],strides=[1, 1]),helper.make_node(name="ReLU_1",op_type="Relu",inputs=["3"],outputs=["output"])
]initializer = [helper.make_tensor(name="conv.weight",data_type=helper.TensorProto.DataType.FLOAT,dims=[1, 1, 3, 3],vals=np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], dtype=np.float32).tobytes(),raw=True),helper.make_tensor(name="conv.bias",data_type=helper.TensorProto.DataType.FLOAT,dims=[1],vals=np.array([0.0], dtype=np.float32).tobytes(),raw=True)
]inputs = [helper.make_value_info(name="image",type_proto=helper.make_tensor_type_proto(elem_type=helper.TensorProto.DataType.FLOAT,shape=["batch", 1, 3, 3]))
]outputs = [helper.make_value_info(name="output",type_proto=helper.make_tensor_type_proto(elem_type=helper.TensorProto.DataType.FLOAT,shape=["batch", 1, 3, 3]))
]graph = helper.make_graph(name="mymodel",inputs=inputs,outputs=outputs,nodes=nodes,initializer=initializer
)# 如果名字不是ai.onnx,netron解析就不是太一样了
opset = [helper.make_operatorsetid("ai.onnx", 11)
]
#AI.ONNX代表人工智能开放模型与表示(Open Neural Network Exchange)。
# producer主要是保持和pytorch一致
model = helper.make_model(graph, opset_imports=opset, producer_name="pytorch", producer_version="1.9")
onnx.save_model(model, "my.onnx")print(model)
print("Done.!")

实际上就是通过helper和各种make函数来构造一个onnx模型出来。

4、修改onnx

对于onnx的修改:

import onnx
import onnx.helper as helper
import numpy as npmodel = onnx.load("demo.onnx")# 可以取出权重
conv_weight = model.graph.initializer[0]
conv_bias = model.graph.initializer[1]
# 修改权
conv_weight.raw_data = np.arange(9, dtype=np.float32).tobytes()# 修改权重后储存
onnx.save_model(model, "demo.change.onnx")
print("Done.!")

取出------>修改------>保存

这篇关于TRT3-trt-basic - 4 ONNX结构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445961

相关文章

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

使用Navicat工具比对两个数据库所有表结构的差异案例详解

《使用Navicat工具比对两个数据库所有表结构的差异案例详解》:本文主要介绍如何使用Navicat工具对比两个数据库test_old和test_new,并生成相应的DDLSQL语句,以便将te... 目录概要案例一、如图两个数据库test_old和test_new进行比较:二、开始比较总结概要公司存在多

Java中switch-case结构的使用方法举例详解

《Java中switch-case结构的使用方法举例详解》:本文主要介绍Java中switch-case结构使用的相关资料,switch-case结构是Java中处理多个分支条件的一种有效方式,它... 目录前言一、switch-case结构的基本语法二、使用示例三、注意事项四、总结前言对于Java初学者

结构体和联合体的区别及说明

《结构体和联合体的区别及说明》文章主要介绍了C语言中的结构体和联合体,结构体是一种自定义的复合数据类型,可以包含多个成员,每个成员可以是不同的数据类型,联合体是一种特殊的数据结构,可以在内存中共享同一... 目录结构体和联合体的区别1. 结构体(Struct)2. 联合体(Union)3. 联合体与结构体的

PostgreSQL如何查询表结构和索引信息

《PostgreSQL如何查询表结构和索引信息》文章介绍了在PostgreSQL中查询表结构和索引信息的几种方法,包括使用`d`元命令、系统数据字典查询以及使用可视化工具DBeaver... 目录前言使用\d元命令查看表字段信息和索引信息通过系统数据字典查询表结构通过系统数据字典查询索引信息查询所有的表名可

usaco 1.3 Mixing Milk (结构体排序 qsort) and hdu 2020(sort)

到了这题学会了结构体排序 于是回去修改了 1.2 milking cows 的算法~ 结构体排序核心: 1.结构体定义 struct Milk{int price;int milks;}milk[5000]; 2.自定义的比较函数,若返回值为正,qsort 函数判定a>b ;为负,a<b;为0,a==b; int milkcmp(const void *va,c

自定义类型:结构体(续)

目录 一. 结构体的内存对齐 1.1 为什么存在内存对齐? 1.2 修改默认对齐数 二. 结构体传参 三. 结构体实现位段 一. 结构体的内存对齐 在前面的文章里我们已经讲过一部分的内存对齐的知识,并举出了两个例子,我们再举出两个例子继续说明: struct S3{double a;int b;char c;};int mian(){printf("%zd\n",s

OpenCV结构分析与形状描述符(11)椭圆拟合函数fitEllipse()的使用

操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C++11 算法描述 围绕一组2D点拟合一个椭圆。 该函数计算出一个椭圆,该椭圆在最小二乘意义上最好地拟合一组2D点。它返回一个内切椭圆的旋转矩形。使用了由[90]描述的第一个算法。开发者应该注意,由于数据点靠近包含的 Mat 元素的边界,返回的椭圆/旋转矩形数据

C语言程序设计(选择结构程序设计)

一、关系运算符和关系表达式 1.1关系运算符及其优先次序 ①<(小于) ②<=(小于或等于) ③>(大于) ④>=(大于或等于 ) ⑤==(等于) ⑥!=(不等于) 说明: 前4个优先级相同,后2个优先级相同,关系运算符的优先级低于算术运算符,关系运算符的优先级高于赋值运算符 1.2关系表达式 用关系运算符将两个表达式(可以是算术表达式或关系表达式,逻辑表达式,赋值表达式,字符

Science|癌症中三级淋巴结构的免疫调节作用与治疗潜力|顶刊精析·24-09-08

小罗碎碎念 Science文献精析 今天精析的这一篇综述,于2022-01-07发表于Science,主要讨论了癌症中的三级淋巴结构(Tertiary Lymphoid Structures, TLS)及其在肿瘤免疫反应中的作用。 作者类型作者姓名单位名称(中文)通讯作者介绍第一作者Ton N. Schumacher荷兰癌症研究所通讯作者之一通讯作者Daniela S. Thomm