VTK修炼之道42:频域处理_高通滤波(理想+巴特沃兹)

2023-12-02 12:08

本文主要是介绍VTK修炼之道42:频域处理_高通滤波(理想+巴特沃兹),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.理想高通滤波器

高通滤波与低通滤波正好相反,是频域图像的高频部分通过而抑制低频部分。在图像中图像的边缘对应高频分量,因此高通滤波的效果是图像锐化。同样最简单的高通滤波器是理想高通滤波器。通过设置一个频率阈值,将高于该阈值的频率部分通过,而低于阈值的低频部分设置为0。

VTK中理想高通滤波的实例如下:

#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL);#include <vtkSmartPointer.h>
#include <vtkJPEGReader.h>
#include <vtkImageFFT.h>
#include <vtkImageIdealHighPass.h>
#include <vtkImageRFFT.h>
#include <vtkImageCast.h>
#include <vtkImageExtractComponents.h>
#include <vtkRenderer.h>
#include <vtkImageActor.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkInteractorStyleImage.h>int main(int argc, char* argv[])
{vtkSmartPointer<vtkJPEGReader> reader =vtkSmartPointer<vtkJPEGReader>::New();reader->SetFileName("lena.jpg");reader->Update();vtkSmartPointer<vtkImageFFT> fftFilter =vtkSmartPointer<vtkImageFFT>::New();fftFilter->SetInputConnection(reader->GetOutputPort());fftFilter->Update();vtkSmartPointer<vtkImageIdealHighPass> highPassFilter =vtkSmartPointer<vtkImageIdealHighPass>::New();highPassFilter->SetInputConnection(fftFilter->GetOutputPort());highPassFilter->SetXCutOff(0.1);highPassFilter->SetYCutOff(0.1);highPassFilter->Update();vtkSmartPointer<vtkImageRFFT> rfftFilter =vtkSmartPointer<vtkImageRFFT>::New();rfftFilter->SetInputConnection(highPassFilter->GetOutputPort());rfftFilter->Update();vtkSmartPointer<vtkImageExtractComponents> ifftExtractReal =vtkSmartPointer<vtkImageExtractComponents>::New();ifftExtractReal->SetInputConnection(rfftFilter->GetOutputPort());ifftExtractReal->SetComponents(0);vtkSmartPointer<vtkImageCast> castFilter =vtkSmartPointer<vtkImageCast>::New();castFilter->SetInputConnection(ifftExtractReal->GetOutputPort());castFilter->SetOutputScalarTypeToUnsignedChar();castFilter->Update();/vtkSmartPointer<vtkImageActor> originalActor =vtkSmartPointer<vtkImageActor>::New();originalActor->SetInputData(reader->GetOutput());vtkSmartPointer<vtkImageActor> erodedActor =vtkSmartPointer<vtkImageActor>::New();erodedActor->SetInputData(castFilter->GetOutput());/double leftViewport[4] = { 0.0, 0.0, 0.5, 1.0 };double rightViewport[4] = { 0.5, 0.0, 1.0, 1.0 };vtkSmartPointer<vtkRenderer> leftRenderer =vtkSmartPointer<vtkRenderer>::New();leftRenderer->AddActor(originalActor);leftRenderer->SetViewport(leftViewport);leftRenderer->SetBackground(1.0, 1.0, 1.0);leftRenderer->ResetCamera();vtkSmartPointer<vtkRenderer> rightRenderer =vtkSmartPointer<vtkRenderer>::New();rightRenderer->AddActor(erodedActor);rightRenderer->SetViewport(rightViewport);rightRenderer->SetBackground(1.0, 1.0, 1.0);rightRenderer->ResetCamera();/vtkSmartPointer<vtkRenderWindow> rw =vtkSmartPointer<vtkRenderWindow>::New();rw->SetSize(640, 320);rw->AddRenderer(leftRenderer);rw->AddRenderer(rightRenderer);rw->SetWindowName("IdealHighPassExample");vtkSmartPointer<vtkRenderWindowInteractor> rwi =vtkSmartPointer<vtkRenderWindowInteractor>::New();vtkSmartPointer<vtkInteractorStyleImage> style =vtkSmartPointer<vtkInteractorStyleImage>::New();rwi->SetInteractorStyle(style);rwi->SetRenderWindow(rw);rwi->Start();return 0;
}


同低通滤波一样,首先将读入图像通过vtkImageFFT转换到频域空间,定义vtkImageIdealHighPass对象,并通过SetXCutOff ()和SetYCutOff() 设置X和Y方向的截止频率。然后通过vtkImageRFFT将处理后的图像转换到空域中,得到高通滤波图像。为了显示的需要,还需要提取图像分量和数据类型的转换。

下面是理想高通滤波的执行结果:


从结果看出高通滤波后图像得到锐化处理,图像中仅剩下边缘。

2.巴特沃兹高通滤波

理想高通滤波器不能通过电子元器件来实现,而且存在振铃现象。在实际中最常使用的高通滤波器是巴特沃斯高通滤波器。该滤波器的转移函数是:


D(u,v)表示频域中点到频域平面的距离,是截止频率。当D(u,v)大于时,对应的H(u,v)逐渐接近1,从而使得高频部分得以通过;而当D(u,v)小于时,H(u,v)逐渐接近0,实现低频部分过滤。巴特沃斯高通滤波器在VTK中对应vtkImageButterworthHighPass类。

下面代码说明了vtkImageButterworthHighPass对图像进行高通滤波:

#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL);#include <vtkSmartPointer.h>
#include <vtkJPEGReader.h>
#include <vtkImageFFT.h>
#include <vtkImageButterworthHighPass.h>
#include <vtkImageRFFT.h>
#include <vtkImageExtractComponents.h>
#include <vtkImageCast.h>
#include <vtkRenderer.h>
#include <vtkImageActor.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkInteractorStyleImage.h>int main(int argc, char* argv[])
{vtkSmartPointer<vtkJPEGReader> reader =vtkSmartPointer<vtkJPEGReader>::New();reader->SetFileName("lena.jpg");reader->Update();vtkSmartPointer<vtkImageFFT> fftFilter =vtkSmartPointer<vtkImageFFT>::New();fftFilter->SetInputConnection(reader->GetOutputPort());fftFilter->Update();vtkSmartPointer<vtkImageButterworthHighPass> highPassFilter =vtkSmartPointer<vtkImageButterworthHighPass>::New();highPassFilter->SetInputConnection(fftFilter->GetOutputPort());highPassFilter->SetXCutOff(0.1);highPassFilter->SetYCutOff(0.1);highPassFilter->Update();vtkSmartPointer<vtkImageRFFT> rfftFilter =vtkSmartPointer<vtkImageRFFT>::New();rfftFilter->SetInputConnection(highPassFilter->GetOutputPort());rfftFilter->Update();vtkSmartPointer<vtkImageExtractComponents> ifftExtractReal =vtkSmartPointer<vtkImageExtractComponents>::New();ifftExtractReal->SetInputConnection(rfftFilter->GetOutputPort());ifftExtractReal->SetComponents(0);vtkSmartPointer<vtkImageCast> castFilter =vtkSmartPointer<vtkImageCast>::New();castFilter->SetInputConnection(ifftExtractReal->GetOutputPort());castFilter->SetOutputScalarTypeToUnsignedChar();castFilter->Update();vtkSmartPointer<vtkImageActor> originalActor =vtkSmartPointer<vtkImageActor>::New();originalActor->SetInputData(reader->GetOutput());vtkSmartPointer<vtkImageActor> erodedActor =vtkSmartPointer<vtkImageActor>::New();erodedActor->SetInputData(castFilter->GetOutput());//double leftViewport[4] = { 0.0, 0.0, 0.5, 1.0 };double rightViewport[4] = { 0.5, 0.0, 1.0, 1.0 };vtkSmartPointer<vtkRenderer> leftRenderer =vtkSmartPointer<vtkRenderer>::New();leftRenderer->AddActor(originalActor);leftRenderer->ResetCamera();leftRenderer->SetViewport(leftViewport);leftRenderer->SetBackground(1.0, 1.0, 1.0);vtkSmartPointer<vtkRenderer> rightRenderer =vtkSmartPointer<vtkRenderer>::New();rightRenderer->AddActor(erodedActor);rightRenderer->SetViewport(rightViewport);rightRenderer->SetBackground(1.0, 1.0, 1.0);rightRenderer->ResetCamera();vtkSmartPointer<vtkRenderWindow> rw =vtkSmartPointer<vtkRenderWindow>::New();rw->AddRenderer(leftRenderer);rw->AddRenderer(rightRenderer);rw->SetSize(640, 320);rw->Render();rw->SetWindowName("Frequency_ButterworthHighPass");/vtkSmartPointer<vtkRenderWindowInteractor> rwi =vtkSmartPointer<vtkRenderWindowInteractor>::New();vtkSmartPointer<vtkInteractorStyleImage> style =vtkSmartPointer<vtkInteractorStyleImage>::New();rwi->SetInteractorStyle(style);rwi->SetRenderWindow(rw);rwi->Start();return 0;
}


vtkImageButterworthHighPass与理想高通滤波使用方法一致。需要设置X和Y轴的截止频率,为了便于比较,其截止频域与理想高通滤波设置一致。

下图是执行结果:

3.参看资料

1.《C++ primer》
2.《The VTK User’s Guide – 11thEdition》
3.  张晓东, 罗火灵. VTK图形图像开发进阶[M]. 机械工业出版社, 2015.


这篇关于VTK修炼之道42:频域处理_高通滤波(理想+巴特沃兹)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445276

相关文章

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建

PHP轻松处理千万行数据的方法详解

《PHP轻松处理千万行数据的方法详解》说到处理大数据集,PHP通常不是第一个想到的语言,但如果你曾经需要处理数百万行数据而不让服务器崩溃或内存耗尽,你就会知道PHP用对了工具有多强大,下面小编就... 目录问题的本质php 中的数据流处理:为什么必不可少生成器:内存高效的迭代方式流量控制:避免系统过载一次性

Python实现批量CSV转Excel的高性能处理方案

《Python实现批量CSV转Excel的高性能处理方案》在日常办公中,我们经常需要将CSV格式的数据转换为Excel文件,本文将介绍一个基于Python的高性能解决方案,感兴趣的小伙伴可以跟随小编一... 目录一、场景需求二、技术方案三、核心代码四、批量处理方案五、性能优化六、使用示例完整代码七、小结一、

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

PHP应用中处理限流和API节流的最佳实践

《PHP应用中处理限流和API节流的最佳实践》限流和API节流对于确保Web应用程序的可靠性、安全性和可扩展性至关重要,本文将详细介绍PHP应用中处理限流和API节流的最佳实践,下面就来和小编一起学习... 目录限流的重要性在 php 中实施限流的最佳实践使用集中式存储进行状态管理(如 Redis)采用滑动

MyBatis-plus处理存储json数据过程

《MyBatis-plus处理存储json数据过程》文章介绍MyBatis-Plus3.4.21处理对象与集合的差异:对象可用内置Handler配合autoResultMap,集合需自定义处理器继承F... 目录1、如果是对象2、如果需要转换的是List集合总结对象和集合分两种情况处理,目前我用的MP的版本

Python自动化处理PDF文档的操作完整指南

《Python自动化处理PDF文档的操作完整指南》在办公自动化中,PDF文档处理是一项常见需求,本文将介绍如何使用Python实现PDF文档的自动化处理,感兴趣的小伙伴可以跟随小编一起学习一下... 目录使用pymupdf读写PDF文件基本概念安装pymupdf提取文本内容提取图像添加水印使用pdfplum

C# LiteDB处理时间序列数据的高性能解决方案

《C#LiteDB处理时间序列数据的高性能解决方案》LiteDB作为.NET生态下的轻量级嵌入式NoSQL数据库,一直是时间序列处理的优选方案,本文将为大家大家简单介绍一下LiteDB处理时间序列数... 目录为什么选择LiteDB处理时间序列数据第一章:LiteDB时间序列数据模型设计1.1 核心设计原则

基于Redis自动过期的流处理暂停机制

《基于Redis自动过期的流处理暂停机制》基于Redis自动过期的流处理暂停机制是一种高效、可靠且易于实现的解决方案,防止延时过大的数据影响实时处理自动恢复处理,以避免积压的数据影响实时性,下面就来详... 目录核心思路代码实现1. 初始化Redis连接和键前缀2. 接收数据时检查暂停状态3. 检测到延时过

Java利用@SneakyThrows注解提升异常处理效率详解

《Java利用@SneakyThrows注解提升异常处理效率详解》这篇文章将深度剖析@SneakyThrows的原理,用法,适用场景以及隐藏的陷阱,看看它如何让Java异常处理效率飙升50%,感兴趣的... 目录前言一、检查型异常的“诅咒”:为什么Java开发者讨厌它1.1 检查型异常的痛点1.2 为什么说