VTK修炼之道41:频域处理_低通滤波(理想+巴特沃兹)

2023-12-02 12:08

本文主要是介绍VTK修炼之道41:频域处理_低通滤波(理想+巴特沃兹),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1.低通滤波器

低通滤波是将频域图像中的高频部分滤除而通过低频部分。图像的边缘和噪声对应于频域图像中的高频部分,而低通滤波的作用即是减弱这部分的能量,从而达到图像平滑去噪的目的。

2.理想低通滤波器

最简单的低通滤波器是理想低通滤波器,基本思想是给定一个频率阈值,将高于该阈值的所有部分设置为0,而低于该频率的部分保持不变。

理想是指该滤波器不能用电子元器件来实现,但是可以通过计算机来模拟。

在VTK中定义了理想低通滤波器,下面我们来看下怎么使用该滤波器来对图像进行低通滤波:

#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL);#include <vtkSmartPointer.h>
#include <vtkJPEGReader.h>
#include <vtkImageFFT.h>
#include <vtkImageIdealLowPass.h>
#include <vtkImageData.h>
#include <vtkImageRFFT.h>
#include <vtkImageCast.h>
#include <vtkImageExtractComponents.h>
#include <vtkImageActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>int main()
{vtkSmartPointer<vtkJPEGReader> reader =vtkSmartPointer<vtkJPEGReader>::New();reader->SetFileName("lena.jpg");reader->Update();vtkSmartPointer<vtkImageFFT> fftFilter =vtkSmartPointer<vtkImageFFT>::New();fftFilter->SetInputConnection(reader->GetOutputPort());fftFilter->Update();vtkSmartPointer<vtkImageIdealLowPass> lowPassFilter =vtkSmartPointer<vtkImageIdealLowPass>::New();lowPassFilter->SetInputConnection(fftFilter->GetOutputPort());lowPassFilter->SetXCutOff(0.05);lowPassFilter->SetYCutOff(0.05);lowPassFilter->Update();vtkSmartPointer<vtkImageRFFT> rfftFilter =vtkSmartPointer<vtkImageRFFT>::New();rfftFilter->SetInputConnection(lowPassFilter->GetOutputPort());rfftFilter->Update();vtkSmartPointer<vtkImageExtractComponents> ifftExtractReal =vtkSmartPointer<vtkImageExtractComponents>::New();ifftExtractReal->SetInputConnection(rfftFilter->GetOutputPort());ifftExtractReal->SetComponents(0);vtkSmartPointer<vtkImageCast> castFilter =vtkSmartPointer<vtkImageCast>::New();castFilter->SetInputConnection(ifftExtractReal->GetOutputPort());castFilter->SetOutputScalarTypeToUnsignedChar();castFilter->Update();vtkSmartPointer<vtkImageActor> originalActor =vtkSmartPointer<vtkImageActor>::New();originalActor->SetInputData(reader->GetOutput());vtkSmartPointer<vtkImageActor> erodedActor =vtkSmartPointer<vtkImageActor>::New();erodedActor->SetInputData(castFilter->GetOutput());double leftViewport[4] = { 0.0, 0.0, 0.5, 1.0 };double rightViewport[4] = { 0.5, 0.0, 1.0, 1.0 };vtkSmartPointer<vtkRenderer> leftRenderer =vtkSmartPointer<vtkRenderer>::New();leftRenderer->AddActor(originalActor);leftRenderer->ResetCamera();leftRenderer->SetViewport(leftViewport);leftRenderer->SetBackground(1.0, 0, 0);vtkSmartPointer<vtkRenderer> rightRenderer =vtkSmartPointer<vtkRenderer>::New();rightRenderer->AddActor(erodedActor);rightRenderer->SetViewport(rightViewport);rightRenderer->ResetCamera();rightRenderer->SetBackground(1.0, 1.0, 1.0);vtkSmartPointer<vtkRenderWindow> renderWindow =vtkSmartPointer<vtkRenderWindow>::New();renderWindow->AddRenderer(rightRenderer);renderWindow->AddRenderer(leftRenderer);renderWindow->SetSize(640, 320);renderWindow->SetWindowName("Frequency_IdealLowPassFilter");vtkSmartPointer<vtkRenderWindowInteractor> interactor =vtkSmartPointer<vtkRenderWindowInteractor>::New();interactor->SetRenderWindow(renderWindow);renderWindow->Render();interactor->Start();return 0;
}

首先读入一副图像,通过vtkImageFFT将图像转换到频域空间。vtkImageIdealLowPass对频域图像做理想低通滤波,需要用户设置每个方向的截断频率,相应的设置函数SetXCutOff()和SetYCutOff()。执行完毕后,需要通过vtkImageRFFT将处理后的频域图像转换至空域图像。 需要注意的是,转换后的图像每个像素都是一个复数,需要vtkImageExtractComponents将该图像的第一个分量提出出来显示,否则图像不能正确显示。由于傅里叶变换输入输出的数据类型都是double,为了方便显示,还需要将其转换为Unsigned char类型,这里vtkImageCast负责类型转换。

下面是对图像做低通滤波的效果:


从结果看,在过滤掉图像的高频部分后,图像变得模糊,丢失了许多细节,另外还可以看到图像会存在一定的振铃效应,这也是理想低通滤波的特点

3.巴特沃兹低通滤波器

在实际中经常使用的是巴特沃斯滤波器。巴特沃斯滤波器对应的转移函数(可以看做是一个系数矩阵)是:


其中D(u,v)表示频域点(u,v)到频域图像原点的距离,称为截止频率,当D(u,v) = 时,H(u,v)=0.5,即对应的频域能量将为原来的一半。因为巴特沃斯低通滤波器在高低频间的过渡平滑,因此不会出现明显的振铃效应。VTK中实现巴特沃斯低通滤波器的类是vtkImageButterworthLowPass.

其使用过程如下:

#include <vtkAutoInit.h>
VTK_MODULE_INIT(vtkRenderingOpenGL);#include <vtkSmartPointer.h>
#include <vtkJPEGReader.h>
#include <vtkImageFFT.h>
#include <vtkImageButterworthLowPass.h>
#include <vtkImageRFFT.h>
#include <vtkImageExtractComponents.h>
#include <vtkImageCast.h>
#include <vtkImageActor.h>
#include <vtkRenderer.h>
#include <vtkRenderWindow.h>
#include <vtkRenderWindowInteractor.h>
#include <vtkInteractorStyleImage.h>int main()
{vtkSmartPointer<vtkJPEGReader> reader =vtkSmartPointer<vtkJPEGReader>::New();reader->SetFileName("lena.jpg");reader->Update();vtkSmartPointer<vtkImageFFT> fftFilter =vtkSmartPointer<vtkImageFFT>::New();fftFilter->SetInputConnection(reader->GetOutputPort());fftFilter->Update();vtkSmartPointer<vtkImageButterworthLowPass> lowPassFilter =vtkSmartPointer<vtkImageButterworthLowPass>::New();lowPassFilter->SetInputConnection(fftFilter->GetOutputPort());lowPassFilter->SetXCutOff(0.05);lowPassFilter->SetYCutOff(0.05);lowPassFilter->Update();vtkSmartPointer<vtkImageRFFT> rfftFilter =vtkSmartPointer<vtkImageRFFT>::New();rfftFilter->SetInputConnection(lowPassFilter->GetOutputPort());rfftFilter->Update();vtkSmartPointer<vtkImageExtractComponents> ifftExtractReal =vtkSmartPointer<vtkImageExtractComponents>::New();ifftExtractReal->SetInputConnection(rfftFilter->GetOutputPort());ifftExtractReal->SetComponents(0);vtkSmartPointer<vtkImageCast> castFilter =vtkSmartPointer<vtkImageCast>::New();castFilter->SetInputConnection(ifftExtractReal->GetOutputPort());castFilter->SetOutputScalarTypeToUnsignedChar();castFilter->Update();vtkSmartPointer<vtkImageActor> originalActor =vtkSmartPointer<vtkImageActor>::New();originalActor->SetInputData(reader->GetOutput());vtkSmartPointer<vtkImageActor> erodedActor =vtkSmartPointer<vtkImageActor>::New();erodedActor->SetInputData(castFilter->GetOutput());///double leftViewport[4] = { 0.0, 0.0, 0.5, 1.0 };double rightViewport[4] = { 0.5, 0.0, 1.0, 1.0 };vtkSmartPointer<vtkRenderer> leftRenderer =vtkSmartPointer<vtkRenderer>::New();leftRenderer->AddActor(originalActor);leftRenderer->SetViewport(leftViewport);leftRenderer->SetBackground(1.0, 0, 0);leftRenderer->ResetCamera();vtkSmartPointer<vtkRenderer> rightRenderer =vtkSmartPointer<vtkRenderer>::New();rightRenderer->AddActor(erodedActor);rightRenderer->SetViewport(rightViewport);rightRenderer->SetBackground(1.0, 1.0, 1.0);rightRenderer->ResetCamera();/vtkSmartPointer<vtkRenderWindow> rw =vtkSmartPointer<vtkRenderWindow>::New();rw->AddRenderer(leftRenderer);rw->AddRenderer(rightRenderer);rw->SetSize(640, 320);rw->SetWindowName("ButterworthLowPassExample");vtkSmartPointer<vtkRenderWindowInteractor> rwi =vtkSmartPointer<vtkRenderWindowInteractor>::New();vtkSmartPointer<vtkInteractorStyleImage> style =vtkSmartPointer<vtkInteractorStyleImage>::New();rwi->SetInteractorStyle(style);rwi->SetRenderWindow(rw);rwi->Start();return 0;
}


vtkImageButterworthLowPass与理想低通滤波器的使用一样。为了便于比较,这里设置X和Y方向的截止频率时,与理想低通滤波器设置一致,下面是相应的执行结果:


从结果来看,巴特沃斯低通滤波器产生的图像更为平滑,不会出现振铃现象。

4.参看资料

1.《C++ primer》
2.《The VTK User’s Guide – 11thEdition》
3.  张晓东, 罗火灵. VTK图形图像开发进阶[M]. 机械工业出版社, 2015.

这篇关于VTK修炼之道41:频域处理_低通滤波(理想+巴特沃兹)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445275

相关文章

Gin框架中的GET和POST表单处理的实现

《Gin框架中的GET和POST表单处理的实现》Gin框架提供了简单而强大的机制来处理GET和POST表单提交的数据,通过c.Query、c.PostForm、c.Bind和c.Request.For... 目录一、GET表单处理二、POST表单处理1. 使用c.PostForm获取表单字段:2. 绑定到结

mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespace id不一致处理

《mysql8.0无备份通过idb文件恢复数据的方法、idb文件修复和tablespaceid不一致处理》文章描述了公司服务器断电后数据库故障的过程,作者通过查看错误日志、重新初始化数据目录、恢复备... 周末突然接到一位一年多没联系的妹妹打来电话,“刘哥,快来救救我”,我脑海瞬间冒出妙瓦底,电信火苲马扁.

Python自动化处理手机验证码

《Python自动化处理手机验证码》手机验证码是一种常见的身份验证手段,广泛应用于用户注册、登录、交易确认等场景,下面我们来看看如何使用Python自动化处理手机验证码吧... 目录一、获取手机验证码1.1 通过短信接收验证码1.2 使用第三方短信接收服务1.3 使用ADB读取手机短信1.4 通过API获取

Python自动化Office文档处理全攻略

《Python自动化Office文档处理全攻略》在日常办公中,处理Word、Excel和PDF等Office文档是再常见不过的任务,手动操作这些文档不仅耗时耗力,还容易出错,幸运的是,Python提供... 目录一、自动化处理Word文档1. 安装python-docx库2. 读取Word文档内容3. 修改

使用C++将处理后的信号保存为PNG和TIFF格式

《使用C++将处理后的信号保存为PNG和TIFF格式》在信号处理领域,我们常常需要将处理结果以图像的形式保存下来,方便后续分析和展示,C++提供了多种库来处理图像数据,本文将介绍如何使用stb_ima... 目录1. PNG格式保存使用stb_imagephp_write库1.1 安装和包含库1.2 代码解

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Spring Boot 整合 ShedLock 处理定时任务重复执行的问题小结

《SpringBoot整合ShedLock处理定时任务重复执行的问题小结》ShedLock是解决分布式系统中定时任务重复执行问题的Java库,通过在数据库中加锁,确保只有一个节点在指定时间执行... 目录前言什么是 ShedLock?ShedLock 的工作原理:定时任务重复执行China编程的问题使用 Shed

Redis如何使用zset处理排行榜和计数问题

《Redis如何使用zset处理排行榜和计数问题》Redis的ZSET数据结构非常适合处理排行榜和计数问题,它可以在高并发的点赞业务中高效地管理点赞的排名,并且由于ZSET的排序特性,可以轻松实现根据... 目录Redis使用zset处理排行榜和计数业务逻辑ZSET 数据结构优化高并发的点赞操作ZSET 结

微服务架构之使用RabbitMQ进行异步处理方式

《微服务架构之使用RabbitMQ进行异步处理方式》本文介绍了RabbitMQ的基本概念、异步调用处理逻辑、RabbitMQ的基本使用方法以及在SpringBoot项目中使用RabbitMQ解决高并发... 目录一.什么是RabbitMQ?二.异步调用处理逻辑:三.RabbitMQ的基本使用1.安装2.架构

一文详解Python中数据清洗与处理的常用方法

《一文详解Python中数据清洗与处理的常用方法》在数据处理与分析过程中,缺失值、重复值、异常值等问题是常见的挑战,本文总结了多种数据清洗与处理方法,文中的示例代码简洁易懂,有需要的小伙伴可以参考下... 目录缺失值处理重复值处理异常值处理数据类型转换文本清洗数据分组统计数据分箱数据标准化在数据处理与分析过