.NET8构建统计Extreme Optimization Numerical Libraries

2023-12-02 11:30

本文主要是介绍.NET8构建统计Extreme Optimization Numerical Libraries,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

为 .NET 8 构建统计应用程序

Extreme Optimization Numerical Libraries for .NET V8.1.22 添加了对 .NET 8 的支持,使您可以使用最新版本的 Microsoft 平台。

Extreme Optimization Numerical Libraries for .NET 是通用数学和统计类的集合,为技术和统计计算提供了完整的平台。它将数学库、向量和矩阵库以及统计库结合在一个方便的包中。它包括对线性代数、复数、数值积分和微分、求解方程、优化、随机数、回归、方差分析、统计分布和假设检验的支持。

Numerical Libraries for .NET V8.1.22 增加了对 .NET 8 的支持,允许开发人员在 Microsoft 流行的 .NET 生态系统的新版本中构建金融、工程和科学应用程序。

关于 .NET 的极限优化数值库

构建金融、工程和科学应用程序。

Extreme Optimization Numerical Libraries for .NET 是通用数学和统计类的集合。它为基于 Microsoft .NET 平台构建的技术和统计计算提供了一个完整的平台。它将数学库、向量和矩阵库以及统计库结合在一个方便的包中。

一般特征

  • 即使对数学不太感兴趣的人也很容易使用。
  • 通过最佳算法的优化实现实现出色的性能。
  • 功能强大,足以满足最苛刻的高级用户的需求。
  • 直观的对象模型。.NET 极端优化数值库中的对象以及它们之间的关系符合我们的日常概念。

数学库功能

  • 一般的
    • 机器浮点常量。
    • 常见的数学常数。
    • 扩展初等函数。
    • 算法支持功能:迭代、容错、收敛测试。
  • 复数
    • 双精度复数值类型。
    • 所有算术运算的重载运算符。
    • 不支持运算符重载的语言的静态运算符函数。
    • 将 System.Math 中的函数扩展到复杂参数。
    • 支持复数无穷大和复数非数字 (NaN)。
    • 复杂的向量和矩阵类。
  • 数值积分与微分
    • 数值微分。
    • 使用辛普森规则和隆伯格方法进行数值积分。
    • 非自适应高斯-克朗罗德数值积分器。
    • 自适应高斯-克朗罗德数值积分器。
    • 无限间隔积分。
    • 具有奇点和/或不连续性的函数的优化。
    • 六种集成规则可供选择,或提供您自己的规则。
    • 二维或更多维度的积分。
  • 曲线拟合和插值
    • 使用多项式、三次样条、分段常数和线性曲线进行插值。
    • 使用多项式或任意函数进行线性最小二乘拟合。
    • 使用预定义函数或您自己的函数进行非线性最小二乘。
    • 预定义的非线性曲线:指数、有理、高斯、洛伦兹、4 和 5 参数逻辑。
    • 加权最小二乘法,具有 4 个预定义的权重函数。
    • 曲线参数的缩放。
    • 曲线参数的约束。
  • 曲线
    • 使用数学曲线的面向对象方法。
    • 方法:求值、导数、定积分、正切、求根。
    • 许多基本类型的曲线:常数、直线、二次曲线、多项式、三次样条、切比雪夫近似、任意函数的线性组合。
  • 解方程
    • 多项式的实根和复根。
    • 任意函数的根:二分法、误报法、Dekker-Brent 法和 Newton-Raphson 法。
    • 联立线性方程组。
    • 非线性方程组:鲍威尔混合“狗腿”法、牛顿法。
    • 最小二乘解。
  • 优化
    • 一维优化:布伦特算法,黄金分割搜索。
    • N 维拟牛顿法:BFGS 和 DFP 变体。
    • N 维共轭梯度法:Fletcher-Reeves 和 Polak-Ribière 变体。
    • 鲍威尔共轭梯度法。
    • Nelder 和 Mead 的下坡单纯形法。
    • Levenberg-Marquardt 非线性最小二乘法。
    • 线搜索算法:Moré-Thuente、二次、单位。
    • 线性程序求解器:基于修订的单纯形法。
    • 线性程序求解器:从 MPS 文件导入。
  • 信号处理
    • 真正的一维和二维快速傅里叶变换。
    • 复杂的二维快速傅里叶变换。
    • 因子 2、3、4、5 的特殊代码。
    • 实数和复数卷积。
    • 托管、32 位和 64 位本机实现。
  • 特殊功能
    • 标准 .NET Framework 类库中未包含 40 多个特殊函数。
    • 组合函数:阶乘、组合、变体等等。
    • 数论函数:最大公约数、最小公倍数、质因数分解、素性测试。
    • Gamma 及相关函数,包括不完全和正则化 gamma 函数、digamma 函数、beta 函数、调和数。
    • 实数和复数的双曲和反双曲函数。
    • 第一类和第二类普通贝塞尔函数和修正贝塞尔函数。
    • 艾里函数及其导数。
    • 指数积分、正弦余弦积分、对数积分。

矢量和矩阵库功能

  • 一般的
    • 单精度、双精度或四精度实数或复数分量。
    • 基于标准 BLAS 和 LAPACK 例程。
    • 100% 托管实施,确保安全性、便携性和小尺寸。
    • 基于英特尔® 数学核心库的本机处理器优化实施,可提高大尺寸的速度。
    • 本机 64 位支持。
  • GPU计算
    • GPU 计算:将计算卸载到 GPU。
    • 数据尽可能长时间地保留在 GPU 上,以获得最佳性能。
  • 向量
    • 密集的向量。
    • 带向量。
    • 常数向量。
    • 行、列和对角向量。
    • 矢量视图。
  • 向量运算
    • 基本算术运算。
    • 逐元素操作。
    • 重载算术运算符。
    • 范数,点积。
    • 最大值和最小值。
    • 向量函数(正弦、余弦等)
  • 矩阵
    • 一般矩阵。
    • 三角矩阵。
    • 实对称矩阵和复埃尔米特矩阵。
    • 带状矩阵。
    • 对角矩阵。
    • 矩阵视图。
  • 矩阵运算
    • 基本算术运算。
    • 矩阵向量积。
    • 重载算术运算。
    • 逐元素操作。
    • 行和列缩放。
    • 规范、等级、条件数。
    • 奇异值、特征值和特征向量。
  • 矩阵分解
    • LU 分解。
    • QR 分解。
    • 乔列斯基分解。
    • 奇异值分解。
    • 对称特征值分解。
    • 非对称特征值分解。
    • 带状 LU 和 Cholesky 分解。
  • 稀疏矩阵
    • 稀疏向量。
    • 稀疏矩阵。
    • 压缩稀疏列格式的矩阵。
    • 稀疏 LU 分解。
    • 读取 Matrix Market 格式的矩阵。
  • 线性方程和最小二乘法
    • 用于矩阵和分解的共享 API。
    • 行列式、逆元、数值等级、条件数。
    • 求解具有 1 个或多个右侧的方程。
    • 使用 QR 或奇异值分解的最小二乘解决方案。
    • 摩尔-彭罗斯伪逆。
    • 非负最小二乘法 (NNLS)。

统计库功能

  • 描述性统计
    • 集中趋势的度量:平均值、中位数、截尾平均值、调和平均值、几何平均值。
    • 尺度测量:方差、标准差、极差、四分位距、平均值和中位数的绝对偏差。
    • 高矩:偏度、峰度。
  • 概率分布
    • 概率密度函数 (PDF)。
    • 累积分布函数(CDF)。
    • 百分位数或逆累积分布函数。
    • 矩:均值、方差、偏度和峰度。
    • 从任何分布生成随机样本。
    • 选定分布的参数估计。
  • 连续概率分布
    • 贝塔分布。
    • 柯西分布。
    • 卡方分布。
    • Erlang 分布。
    • 指数分布。
    • F分布。
    • 伽马分布。
    • 广义帕累托分布。
    • 甘贝尔分布。
    • 拉普拉斯分布。
    • 物流配送。
    • 对数正态分布。
    • 正态分布。
    • 帕累托分布。
    • 分段分布。
    • 瑞利分布。
    • 学生 t 分布。
    • 转换后的 beta 分布。
    • 变换后的伽玛分布。
    • 三角形分布。
    • 均匀分布。
    • 威布尔分布。
  • 离散概率分布
    • 伯努利分布。
    • 二项分布。
    • 几何分布。
    • 超几何分布。
    • 负二项分布。
    • 泊松分布。
    • 均匀分布。
  • 多元概率分布
    • 多元正态分布。
    • 狄利克雷分布。
  • 直方图
    • 一维直方图。
    • 与直方图相关的概率分布。
  • 一般线性模型
    • 一般线性模型和广义线性模型计算的基础设施。
    • 方差分析。
    • 回归分析。
    • 模型特定的假设检验。
  • 方差分析 (ANOVA)
    • 一向和双向方差分析。
    • 具有重复测量的单向方差分析。
  • 回归分析
    • 简单回归、多元回归和多项式回归。
    • 非线性回归。
    • 逻辑回归。
    • 广义线性模型。
    • 灵活的回归模型。
    • 方差-协方差矩阵、回归矩阵。
    • 回归参数的置信区间和显着性检验。
  • 时间序列分析
    • 将多个观察变量视为一个单元。
    • 更改时间序列的频率。
    • 自动应用预定义的聚合器。
    • 高级聚合器:成交量加权平均。
  • 时间序列数据的转换
    • 滞后时间序列、总和、乘积。
    • 变化、变化百分比、增长率。
    • 推断变化、变化百分比、增长率。
    • 期间至今的总和与差异。
    • 简单、指数、加权移动平均线。
    • Savitsky-Golay 平滑。
  • 多元模型
    • 主成分分析(PCA)。
    • 层次聚类。
    • K-均值聚类。
  • 统计检验
    • 均值检验:一个样本 z 检验,一个样本 t 检验。
    • 配对和不配对的双样本 t 检验,用于检测两个样本均值之间的差异。
    • 两个样本的比率 z 检验。
    • 一个样本卡方方差检验。
    • 两个方差之比的 F 检验。
    • 一和两个样本柯尔莫哥洛夫-斯米尔诺夫检验。
    • 安德森-达林正态性检验。
    • 卡方拟合优度检验。
    • Bartlett 和 Levene 检验方差齐性。
    • 麦克尼马尔和斯图尔特-麦克斯韦测试。
  • 随机数生成
    • 与.NET Framework 的System.Random 兼容。
    • 四种发电机,具有不同的质量、周期和速度,以满足您的应用需求。
    • 从任何分布生成随机样本。
    • 福雷和霍尔顿序列。
    • 洗牌器和随机计数器。

这篇关于.NET8构建统计Extreme Optimization Numerical Libraries的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/445178

相关文章

hdu1496(用hash思想统计数目)

作为一个刚学hash的孩子,感觉这道题目很不错,灵活的运用的数组的下标。 解题步骤:如果用常规方法解,那么时间复杂度为O(n^4),肯定会超时,然后参考了网上的解题方法,将等式分成两个部分,a*x1^2+b*x2^2和c*x3^2+d*x4^2, 各自作为数组的下标,如果两部分相加为0,则满足等式; 代码如下: #include<iostream>#include<algorithm

嵌入式QT开发:构建高效智能的嵌入式系统

摘要: 本文深入探讨了嵌入式 QT 相关的各个方面。从 QT 框架的基础架构和核心概念出发,详细阐述了其在嵌入式环境中的优势与特点。文中分析了嵌入式 QT 的开发环境搭建过程,包括交叉编译工具链的配置等关键步骤。进一步探讨了嵌入式 QT 的界面设计与开发,涵盖了从基本控件的使用到复杂界面布局的构建。同时也深入研究了信号与槽机制在嵌入式系统中的应用,以及嵌入式 QT 与硬件设备的交互,包括输入输出设

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

maven 编译构建可以执行的jar包

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「stormsha的主页」👈,「stormsha的知识库」👈持续学习,不断总结,共同进步,为了踏实,做好当下事儿~ 专栏导航 Python系列: Python面试题合集,剑指大厂Git系列: Git操作技巧GO

flume系列之:查看flume系统日志、查看统计flume日志类型、查看flume日志

遍历指定目录下多个文件查找指定内容 服务器系统日志会记录flume相关日志 cat /var/log/messages |grep -i oom 查找系统日志中关于flume的指定日志 import osdef search_string_in_files(directory, search_string):count = 0

hdu4267区间统计

题意:给一些数,有两种操作,一种是在[a,b] 区间内,对(i - a)% k == 0 的加value,另一种操作是询问某个位置的值。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import

hdu4417区间统计

给你一个数列{An},然后有m次查询,每次查询一段区间 [l,r] <= h 的值的个数。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamRead

hdu3333区间统计

题目大意:求一个区间内不重复数字的和,例如1 1 1 3,区间[1,4]的和为4。 import java.io.BufferedInputStream;import java.io.BufferedReader;import java.io.IOException;import java.io.InputStream;import java.io.InputStreamReader;

实例:如何统计当前主机的连接状态和连接数

统计当前主机的连接状态和连接数 在 Linux 中,可使用 ss 命令来查看主机的网络连接状态。以下是统计当前主机连接状态和连接主机数量的具体操作。 1. 统计当前主机的连接状态 使用 ss 命令结合 grep、cut、sort 和 uniq 命令来统计当前主机的 TCP 连接状态。 ss -nta | grep -v '^State' | cut -d " " -f 1 | sort |

嵌入式Openharmony系统构建与启动详解

大家好,今天主要给大家分享一下,如何构建Openharmony子系统以及系统的启动过程分解。 第一:OpenHarmony系统构建      首先熟悉一下,构建系统是一种自动化处理工具的集合,通过将源代码文件进行一系列处理,最终生成和用户可以使用的目标文件。这里的目标文件包括静态链接库文件、动态链接库文件、可执行文件、脚本文件、配置文件等。      我们在编写hellowor