大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资

本文主要是介绍大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1

引言

大小盘动量轮动策略是一种常见的量化投资策略,它利用市场中不同市值板块之间的相对强弱来实现盈利。本文以上证50ETF作为大盘股代表,以创业板50ETF作为小盘股代表。上证50ETF主要反映的是大盘蓝筹股的走势,其成份股主要是市值较大、流动性好、盈利能力强的优质企业。大盘股的投资特点是稳健、低风险,但可能收益较低。相比之下,创业板50ETF主要反映的是小盘成长股的走势,其成份股主要是市值较小、成长性较强的创新型企业。小盘股的投资特点是高风险、高收益。

动量投资策略的基本原理是强者恒强,弱者恒弱。即过去表现较好的资产在未来一段时间内很可能会继续表现优越,而过去表现较差的资产在未来一段时间内很可能会继续表现不佳。动量策略通过捕捉市场的趋势来实现盈利,本策略试图采用价格与均线的比值捕捉大盘和小盘之间的轮动,实现在两个ETF中进行择时交易,可以在不同市场环境下选择相对表现较好的指数ETF进行投资,获得更好的收益。

2

策略实现与回测

下面基于qstock获取上证50ETF和创业板50ETF行情数据。

import qstock as qs
import pandas as pd
import numpy as np
from tabulate import tabulate
import matplotlib.pyplot as plt
def etf_data(code1,code2,ma_period=20):#获取第一个ETF数据data1=qs.get_data(code1)data1['ma'] = data1['close'].rolling(ma_period).mean()data1['ma_ratio'] = (data1['close'] / data1['ma']) - 1data1=data1[['close','open','ma_ratio']]#获取第二个ETF数据data2=qs.get_data(code2)data2['ma'] = data2['close'].rolling(ma_period).mean()data2['ma_ratio'] = (data2['close'] / data2['ma']) - 1data2=data2[['close','open','ma_ratio']]#列重命名cols=['close','open','ma_ratio']cols1=[i+'_x' for i in cols]cols2=[i+'_y' for i in cols]data1=data1.rename(columns=dict(zip(cols,cols1)))data2=data2.rename(columns=dict(zip(cols,cols2)))#数据合并data=pd.concat([data1,data2],axis=1,join='inner').dropna()return data
df=etf_data('510050','159949',30)
#上证50ETF(close_x,图中蓝色)和创业板50ETF(close_y,图中红色)
qs.line(df[['close_x','close_y']]/df[['close_x','close_y']].iloc[0])

由于创业板50ETF上市较晚,因此回测期间为2016年9月1日至203年5月8日。以2016年9月1日为基准,上证50ETF和创业板50ETF累计净值如下图所示。2016.9-2018.12年,大盘强于小盘;2019.1-2021.1二者均出现向上趋势,小盘强于大盘;2021-2023.5指数均出现下跌趋势,其中大盘相对小盘较稳健。

cd6cd53fca7e306b490bc3dc23289935.jpeg

交易策略思路:

交易策略基于两个指数ETF:上证50ETF(510050,代表大盘股)和创业板50ETF(159949,代表小盘股),下面分别使用x和y表示,对应价格为close_x和close_y。策略的核心逻辑是根据两者的均线比例动态调整持仓,以捕捉相对强势的标的,并在不同市场环境下实现超额收益。具体如下:

(1)若当前无持仓,根据昨日两个标的的均线比例判断:a. 若x的均线比例大于0且大于y的均线比例,买入x标的。b. 若y的均线比例大于0且大于x的均线比例,买入y标的。

(2)若当前持仓为x标的,根据昨日两个标的的均线比例判断:a. 若两者均线比例都小于0,卖出x标的并空仓。b. 若y的均线比例大于0且大于x的均线比例,卖出x标的,买入y标的。

(3)若当前持仓为y标的,根据昨日两个标的的均线比例判断:a. 若两者均线比例都小于0,卖出y标的并空仓。b. 若x的均线比例大于0且大于y的均线比例,卖出y标的,买入x标的。

策略在每个交易日都会根据上述逻辑进行相应的操作,从而实现在大盘股和小盘股之间的动态轮动。下面先基于pandas构建向量化的简易回测函数,这里暂不考虑交易手续费和滑点的影响。由于代码篇幅较长,此处省略,完整代码见Python金融量化知识星球【文末】

def backtest(df):# 初始化holding = Nonedf['strategy_return']=0# 回测for i in range(1, len(df)):#判断持仓情况#空仓if holding is None:#注意信号判断要滞后一期#触发空仓条件#触发买入x标的条件#触发买入y标的条件#持仓xelif holding == 'x':#触发空仓条件#触发买入x标的条件#触发买入y标的条件#持仓yelif holding == 'y':#触发空仓条件#触发买入x标的条件#触发买入y标的条件#计算累计收益率#计算年化收益率#计算夏普比率#计算最大回撤# 输出回测指标比较结果

回测结果如下:

backtest(etf_data('510050','159949',30))

44fe43400152757ab98bf55c271de090.jpeg

d09d82973ef652203678f1f79a8a6441.jpeg

从回测结果来看,在2016年9月1日至2023年5月8日期间,ETF轮动策略的总收益率为1.3640,年化收益率为0.1432,相较于上证50ETF和创业板50ETF的表现,策略取得了较好的收益,同时策略在最大回撤和夏普比率上均优于买入持有对应指数ETF。当然,这里没有考虑交易手续费和滑点的影响。下面再给出基于backtrader事件驱动的回测结果(部分)进行比较。

fab7aaff456528aee6529546f4d64ceb.jpeg

bfcdd996044261f158ecdf5fc2c6c0c3.jpeg

a76b8b8149e4f34b896298970a4e9b1a.jpeg

f40194befbfdf5f38e4b7ba5829cf326.jpeg

7e6369b043ce0a2d3f1da89f26194a49.jpeg

向量化回测和基于事件驱动的回测方法各有优缺点。向量化回测在计算速度上具有优势,但它假设在一个交易日内可以同时买卖,这在实际交易中是不现实的。相反,事件驱动回测会更接近现实交易环境,因为它是基于时间序列的,每个交易日的操作都会受到前一个交易日操作的影响。在本例中,backtrader回测结果表明年化收益率为8%,累计收益率64.48%,最大回撤35%,均低于向量化回测结果。这可能是因为向量化回测在计算收益时存在一定程度的偏差,导致收益被高估,而事件驱动回测则更接近实际交易情况。

3

结语

通过上述的大小盘指数ETF动量轮动交易策略,本文尝试在不同市场环境下捕捉相对强势的投资标的,以实现超额收益。策略关注上证50ETF(510050,代表大盘股)和创业板50ETF(159949,代表小盘股),并根据它们的均线比例动态调整持仓。然而,在实际操作中应谨慎对待此类策略,因为历史表现并不能确保未来的成功。在实际应用中,还需要关注风险管理、资金管理和交易成本等多个方面,确保策略的可持续性。同时,投资者可以尝试结合其他技术指标、市场情绪等因素,进一步优化策略,以适应不断变化的市场环境。总而言之,大小盘指数ETF动量轮动交易策略为我们提供了一个有趣的思路,有助于在市场波动中发现投资机会。但在实践中,大家应关注多种风险因素,不断完善和优化策略,以实现长期稳健的投资回报。

447f420d12503bbc8dd267077639ffda.png

关于Python金融量化

78b97b65254665bbd70188d6c9047d49.png

专注于分享Python在金融量化领域的应用。加入知识星球,可以免费获取qstock源代码、30多g的量化投资视频资料、量化金融相关PDF资料、公众号文章Python完整源码、与博主直接交流、答疑解惑等。添加个人微信sky2blue2可获取八五折优惠。

65be524211bbc5a832b2568926263fb4.jpeg

这篇关于大小盘轮动策略:如何在上证50ETF与创业板50ETF之间实现高效投资的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/442751

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Python脚本实现自动删除C盘临时文件夹

《Python脚本实现自动删除C盘临时文件夹》在日常使用电脑的过程中,临时文件夹往往会积累大量的无用数据,占用宝贵的磁盘空间,下面我们就来看看Python如何通过脚本实现自动删除C盘临时文件夹吧... 目录一、准备工作二、python脚本编写三、脚本解析四、运行脚本五、案例演示六、注意事项七、总结在日常使用

Java实现Excel与HTML互转

《Java实现Excel与HTML互转》Excel是一种电子表格格式,而HTM则是一种用于创建网页的标记语言,虽然两者在用途上存在差异,但有时我们需要将数据从一种格式转换为另一种格式,下面我们就来看看... Excel是一种电子表格格式,广泛用于数据处理和分析,而HTM则是一种用于创建网页的标记语言。虽然两

Java中Springboot集成Kafka实现消息发送和接收功能

《Java中Springboot集成Kafka实现消息发送和接收功能》Kafka是一个高吞吐量的分布式发布-订阅消息系统,主要用于处理大规模数据流,它由生产者、消费者、主题、分区和代理等组件构成,Ka... 目录一、Kafka 简介二、Kafka 功能三、POM依赖四、配置文件五、生产者六、消费者一、Kaf

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand