RIL 机制源码分析

2023-12-01 16:38
文章标签 分析 源码 机制 ril

本文主要是介绍RIL 机制源码分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Android 电话系统框架介绍

Android系统中rild运行在AP上,AP上的应用通过rild发送AT指令给BPBP接收到信息后又通过rild传送给AP。AP与BP之间有两种通信方式:

1.Solicited Response:ApBp发送请求,BpAp发送回复,该类型的AT指令及其回调函数以数组的形式存放在Ril_commands.h文件中:

    {数组中的索引号,请求回调函数,响应回调函数}

[objc] view plain copy
print ?
  1.    {0NULLNULL},                   //none  
  2.    {RIL_REQUEST_GET_SIM_STATUS, dispatchVoid, responseSimStatus},  
  3.    {RIL_REQUEST_ENTER_SIM_PIN, dispatchStrings, responseInts},  
  4.    {RIL_REQUEST_ENTER_SIM_PUK, dispatchStrings, responseInts},  
  5.    {RIL_REQUEST_ENTER_SIM_PIN2, dispatchStrings, responseInts},  
  6.    {RIL_REQUEST_ENTER_SIM_PUK2, dispatchStrings, responseInts},  
  7.    {RIL_REQUEST_CHANGE_SIM_PIN, dispatchStrings, responseInts},  
  8.    {RIL_REQUEST_CHANGE_SIM_PIN2, dispatchStrings, responseInts},  
  9.    {RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, dispatchStrings, responseInts},  
  10.    {RIL_REQUEST_GET_CURRENT_CALLS, dispatchVoid, responseCallList},  
  11.    {RIL_REQUEST_DIAL, dispatchDial, responseVoid},  
  12.    {RIL_REQUEST_GET_IMSI, dispatchStrings, responseString},  
  13.    {RIL_REQUEST_HANGUP, dispatchInts, responseVoid},  
  14.    {RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND, dispatchVoid, responseVoid},  
  15. ...  
    {0, NULL, NULL},                   //none{RIL_REQUEST_GET_SIM_STATUS, dispatchVoid, responseSimStatus},{RIL_REQUEST_ENTER_SIM_PIN, dispatchStrings, responseInts},{RIL_REQUEST_ENTER_SIM_PUK, dispatchStrings, responseInts},{RIL_REQUEST_ENTER_SIM_PIN2, dispatchStrings, responseInts},{RIL_REQUEST_ENTER_SIM_PUK2, dispatchStrings, responseInts},{RIL_REQUEST_CHANGE_SIM_PIN, dispatchStrings, responseInts},{RIL_REQUEST_CHANGE_SIM_PIN2, dispatchStrings, responseInts},{RIL_REQUEST_ENTER_NETWORK_DEPERSONALIZATION, dispatchStrings, responseInts},{RIL_REQUEST_GET_CURRENT_CALLS, dispatchVoid, responseCallList},{RIL_REQUEST_DIAL, dispatchDial, responseVoid},{RIL_REQUEST_GET_IMSI, dispatchStrings, responseString},{RIL_REQUEST_HANGUP, dispatchInts, responseVoid},{RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND, dispatchVoid, responseVoid},...

不同手机厂商使用的AT命令不完全相同,为了保密,APBP之间通过各厂商自己的相关动态库来通信。

RIL模块由rild守护进程、libril.solibrefrence.so三部分组成:

  1.rild模块被编译为一个可执行文件,实现一个main函数作为整个ril模块的入口点。在初始化时使用dlopen打开librefrence_ril.so,从中取出并执行RIL_Init函数,得到RIL_RadioFunctions指针,通过RIL_register()函数注册到libril.so库中,其源码结构如下:

 

 2.libril.so是共享库,主要负责同上层的通信工作,接收ril的请求,并传递给librefrence_ril.so,同时将librefrence_ril.so返回的消息送给调用进程,源码结构如下所示:

 

3.librefrence_ril.so是由各手机厂商自己实现,在rild进程运行中通过dlopen方式加载,主要负责跟modem硬件通信,转换来自libril.so的请求为AT命令,同时监听Modem的反馈信息给libril.so


Android的电话系统主要分为三个部分,Java层的各种电话相关应用,java层的Phone Service,主要为上层提供API,同时与native进行通信,可以看做为电话系统的客户端,native层的电话服务进程RILD,负责为上层提供各种电话功能服务,直接与modem进行交互:


Android电话系统设计框架图:


由于Android 开发者使用的Modem 是不一样的,各种指令格式,初始化序列都可能不一样,所以为了消除这些差别,Android 设计者将ril 做了一个抽象,使用一个虚拟电话的概念,不同modem相关的AT指令或者通信协议编译成相应的动态链接库.so文件,Rild 是具体的AT 指令合成者和应答解析者。


Android电话系统代码结构图:



RILD框架设计

在android的电话系统中,在native层实现了电话服务的服务端,由RILD服务与modem的交互,在java层实现电话的客户端,本文主要介绍电话系统的服务端RILD进程,以下是RILD的设计框架图:



RILD源码分析

接下来通过源码对RILD的整个框架进行详细介绍。

在kernel启动完成后,将启动第一个应用进程Init进程,在android之Init进程启动过程源码分析一文中对init进程的启动流程进行了详细的介绍。init进程在启动过程中将读取init.rc文件来启动一些重量级的native服务,rild进程就是通过配置在init.rc中来启动的。

[html] view plain copy
print ?
  1. service ril-daemon /system/bin/rild  
  2.     class main  
  3.     socket rild stream 660 root radio  
  4.     socket rild-debug stream 660 radio system  
  5.     user root  
  6.     group radio cache inet misc audio sdcard_rw log  
service ril-daemon /system/bin/rildclass mainsocket rild stream 660 root radiosocket rild-debug stream 660 radio systemuser rootgroup radio cache inet misc audio sdcard_rw log

RILD进程入口函数分析

接下来给出的是RILD进程启动的时序图:

hardware\ril\rild\rild.c

[objc] view plain copy
print ?
  1. int main(int argc, charchar **argv)  
  2. {  
  3.     const charchar * rilLibPath = NULL;  
  4.     charchar **rilArgv;  
  5.     voidvoid *dlHandle;  
  6.     const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, intcharchar **);  
  7.     const RIL_RadioFunctions *funcs;  
  8.     char libPath[PROPERTY_VALUE_MAX];  
  9.     unsigned char hasLibArgs = 0;  
  10.     int i;  
  11.   umask(S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH | S_IWOTH | S_IXOTH);  
  12.   //rild启动无参数  
  13.     for (i = 1; i < argc ;) {  
  14.         if (0 == strcmp(argv[i], "-l") && (argc - i > 1)) {  
  15.             rilLibPath = argv[i + 1];  
  16.             i += 2;  
  17.         } else if (0 == strcmp(argv[i], "--")) {  
  18.             i++;  
  19.             hasLibArgs = 1;  
  20.             break;  
  21.         } else {  
  22.             usage(argv[0]);  
  23.         }  
  24.     }  
  25.   if (rilLibPath == NULL) {  
  26.       //通过Android属性系统读取属性"rild.libpath"的值,即lib库的存放路径  
  27.         if ( 0 == property_get(LIB_PATH_PROPERTY, libPath, NULL)) {  
  28.             goto done;  
  29.         } else {  
  30.             rilLibPath = libPath;  
  31.         }  
  32.   }  
  33. ##################################################################################  
  34.                             判断是否为模拟器  
  35. ##################################################################################  
  36. #if 1  
  37.     {  
  38.         static char*  arg_overrides[3];  
  39.         static char   arg_device[32];  
  40.         int           done = 0;  
  41. #define  REFERENCE_RIL_PATH  "/system/lib/libreference-ril.so"  
  42.         /* first, read /proc/cmdline into memory */  
  43.         char          buffer[1024], *p, *q;  
  44.         int           len;  
  45.         int           fd = open("/proc/cmdline",O_RDONLY);  
  46.         if (fd < 0) {  
  47.             LOGD("could not open /proc/cmdline:%s", strerror(errno));  
  48.             goto OpenLib;  
  49.         }  
  50.         //读取/proc/cmdline文件中的内容  
  51.         do {  
  52.             len = read(fd,buffer,sizeof(buffer)); }  
  53.         while (len == -1 && errno == EINTR);  
  54.         if (len < 0) {  
  55.             LOGD("could not read /proc/cmdline:%s", strerror(errno));  
  56.             close(fd);  
  57.             goto OpenLib;  
  58.         }  
  59.         close(fd);  
  60.         //判断是否为模拟器,对于真机,此处条件为false  
  61.         if (strstr(buffer, "android.qemud=") != NULL)  
  62.         {  
  63.             int  tries = 5;  
  64. #define  QEMUD_SOCKET_NAME    "qemud"  
  65.             while (1) {  
  66.                 int  fd;  
  67.                 sleep(1);  
  68.                 fd = socket_local_client(QEMUD_SOCKET_NAME,  
  69.                             ANDROID_SOCKET_NAMESPACE_RESERVED,  
  70.                             SOCK_STREAM );  
  71.                 if (fd >= 0) {  
  72.                     close(fd);  
  73.                     snprintf( arg_device, sizeof(arg_device), "%s/%s",  
  74.                                 ANDROID_SOCKET_DIR, QEMUD_SOCKET_NAME );  
  75.                     arg_overrides[1] = "-s";  
  76.                     arg_overrides[2] = arg_device;  
  77.                     done = 1;  
  78.                     break;  
  79.                 }  
  80.                 LOGD("could not connect to %s socket: %s",QEMUD_SOCKET_NAME, strerror(errno));  
  81.                 if (--tries == 0)  
  82.                     break;  
  83.             }  
  84.             if (!done) {  
  85.                 LOGE("could not connect to %s socket (giving up): %s",  
  86.                     QEMUD_SOCKET_NAME, strerror(errno));  
  87.                 while(1)  
  88.                     sleep(0x00ffffff);  
  89.             }  
  90.         }  
  91.   
  92.         /* otherwise, try to see if we passed a device name from the kernel */  
  93.         if (!done) do { //true  
  94. #define  KERNEL_OPTION  "android.ril="  
  95. #define  DEV_PREFIX     "/dev/"  
  96.             //判断/proc/cmdline中的内容是否包含"android.ril="  
  97.             p = strstr( buffer, KERNEL_OPTION );  
  98.             if (p == NULL)  
  99.                 break;  
  100.             p += sizeof(KERNEL_OPTION)-1;  
  101.             q  = strpbrk( p, " \t\n\r" );  
  102.             if (q != NULL)  
  103.                 *q = 0;  
  104.             snprintf( arg_device, sizeof(arg_device), DEV_PREFIX "%s", p );  
  105.             arg_device[sizeof(arg_device)-1] = 0;  
  106.             arg_overrides[1] = "-d";  
  107.             arg_overrides[2] = arg_device;  
  108.             done = 1;  
  109.         } while (0);  
  110.           
  111.         if (done) { //false  
  112.             argv = arg_overrides;  
  113.             argc = 3;  
  114.             i    = 1;  
  115.             hasLibArgs = 1;  
  116.             rilLibPath = REFERENCE_RIL_PATH;  
  117.             LOGD("overriding with %s %s", arg_overrides[1], arg_overrides[2]);  
  118.         }  
  119.     }  
  120. OpenLib:  
  121. #endif  
  122. ##################################################################################  
  123.                             动态库装载  
  124. ##################################################################################  
  125.   
  126.   switchUser();//设置Rild进程的组用户为radio  
  127.   //加载厂商自定义的库  
  128.     ①dlHandle = dlopen(rilLibPath, RTLD_NOW);  
  129.     if (dlHandle == NULL) {  
  130.         fprintf(stderr, "dlopen failed: %s\n", dlerror());  
  131.         exit(-1);  
  132.   }  
  133.   //<span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">创建客户端事件监听线程</span>  
  134.   ②RIL_startEventLoop();  
  135.   //<span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">通过dlsym定位到RIL_Init函数的地址,并且强制转换为RIL_RadioFunctions的函数指针</span>  
  136.     ③rilInit = (const RIL_RadioFunctions *(*)(const struct RIL_Env *, intcharchar **))dlsym(dlHandle, "RIL_Init");  
  137.     if (rilInit == NULL) {  
  138.         fprintf(stderr, "RIL_Init not defined or exported in %s\n", rilLibPath);  
  139.         exit(-1);  
  140.     }  
  141.     if (hasLibArgs) { //false  
  142.         rilArgv = argv + i - 1;  
  143.         argc = argc -i + 1;  
  144.     } else {  
  145.         static charchar * newArgv[MAX_LIB_ARGS];  
  146.         static char args[PROPERTY_VALUE_MAX];  
  147.         rilArgv = newArgv;  
  148.         property_get(LIB_ARGS_PROPERTY, args, "");//通过属性系统读取"rild.libargs"属性值  
  149.         argc = make_argv(args, rilArgv);  
  150.     }  
  151.     // Make sure there's a reasonable argv[0]  
  152.   rilArgv[0] = argv[0];  
  153.   //调用RIL_Init函数来初始化rild,传入参数s_rilEnv,返回RIL_RadioFunctions地址  
  154.   ④funcs = rilInit(&s_rilEnv, argc, rilArgv);  
  155.   //<span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">注册客户端事件处理接口</span><span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">RIL_RadioFunctions</span><span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">,并创建socket监听事件</span>  
  156.     ⑤RIL_register(funcs);  
  157. done:  
  158.     while(1) {  
  159.         // sleep(UINT32_MAX) seems to return immediately on bionic  
  160.         sleep(0x00ffffff);  
  161.     }  
  162. }  
int main(int argc, char **argv)
{const char * rilLibPath = NULL;char **rilArgv;void *dlHandle;const RIL_RadioFunctions *(*rilInit)(const struct RIL_Env *, int, char **);const RIL_RadioFunctions *funcs;char libPath[PROPERTY_VALUE_MAX];unsigned char hasLibArgs = 0;int i;umask(S_IRGRP | S_IWGRP | S_IXGRP | S_IROTH | S_IWOTH | S_IXOTH);//rild启动无参数for (i = 1; i < argc ;) {if (0 == strcmp(argv[i], "-l") && (argc - i > 1)) {rilLibPath = argv[i + 1];i += 2;} else if (0 == strcmp(argv[i], "--")) {i++;hasLibArgs = 1;break;} else {usage(argv[0]);}}if (rilLibPath == NULL) {//通过Android属性系统读取属性"rild.libpath"的值,即lib库的存放路径if ( 0 == property_get(LIB_PATH_PROPERTY, libPath, NULL)) {goto done;} else {rilLibPath = libPath;}}
##################################################################################判断是否为模拟器
##################################################################################
#if 1{static char*  arg_overrides[3];static char   arg_device[32];int           done = 0;
#define  REFERENCE_RIL_PATH  "/system/lib/libreference-ril.so"/* first, read /proc/cmdline into memory */char          buffer[1024], *p, *q;int           len;int           fd = open("/proc/cmdline",O_RDONLY);if (fd < 0) {LOGD("could not open /proc/cmdline:%s", strerror(errno));goto OpenLib;}//读取/proc/cmdline文件中的内容do {len = read(fd,buffer,sizeof(buffer)); }while (len == -1 && errno == EINTR);if (len < 0) {LOGD("could not read /proc/cmdline:%s", strerror(errno));close(fd);goto OpenLib;}close(fd);//判断是否为模拟器,对于真机,此处条件为falseif (strstr(buffer, "android.qemud=") != NULL){int  tries = 5;
#define  QEMUD_SOCKET_NAME    "qemud"while (1) {int  fd;sleep(1);fd = socket_local_client(QEMUD_SOCKET_NAME,ANDROID_SOCKET_NAMESPACE_RESERVED,SOCK_STREAM );if (fd >= 0) {close(fd);snprintf( arg_device, sizeof(arg_device), "%s/%s",ANDROID_SOCKET_DIR, QEMUD_SOCKET_NAME );arg_overrides[1] = "-s";arg_overrides[2] = arg_device;done = 1;break;}LOGD("could not connect to %s socket: %s",QEMUD_SOCKET_NAME, strerror(errno));if (--tries == 0)break;}if (!done) {LOGE("could not connect to %s socket (giving up): %s",QEMUD_SOCKET_NAME, strerror(errno));while(1)sleep(0x00ffffff);}}/* otherwise, try to see if we passed a device name from the kernel */if (!done) do { //true
#define  KERNEL_OPTION  "android.ril="
#define  DEV_PREFIX     "/dev/"//判断/proc/cmdline中的内容是否包含"android.ril="p = strstr( buffer, KERNEL_OPTION );if (p == NULL)break;p += sizeof(KERNEL_OPTION)-1;q  = strpbrk( p, " \t\n\r" );if (q != NULL)*q = 0;snprintf( arg_device, sizeof(arg_device), DEV_PREFIX "%s", p );arg_device[sizeof(arg_device)-1] = 0;arg_overrides[1] = "-d";arg_overrides[2] = arg_device;done = 1;} while (0);if (done) { //falseargv = arg_overrides;argc = 3;i    = 1;hasLibArgs = 1;rilLibPath = REFERENCE_RIL_PATH;LOGD("overriding with %s %s", arg_overrides[1], arg_overrides[2]);}}
OpenLib:
#endif
##################################################################################动态库装载
##################################################################################switchUser();//设置Rild进程的组用户为radio//加载厂商自定义的库①dlHandle = dlopen(rilLibPath, RTLD_NOW);if (dlHandle == NULL) {fprintf(stderr, "dlopen failed: %s\n", dlerror());exit(-1);}//<span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">创建客户端事件监听线程</span>②RIL_startEventLoop();//<span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">通过dlsym定位到RIL_Init函数的地址,并且强制转换为RIL_RadioFunctions的函数指针</span>③rilInit = (const RIL_RadioFunctions *(*)(const struct RIL_Env *, int, char **))dlsym(dlHandle, "RIL_Init");if (rilInit == NULL) {fprintf(stderr, "RIL_Init not defined or exported in %s\n", rilLibPath);exit(-1);}if (hasLibArgs) { //falserilArgv = argv + i - 1;argc = argc -i + 1;} else {static char * newArgv[MAX_LIB_ARGS];static char args[PROPERTY_VALUE_MAX];rilArgv = newArgv;property_get(LIB_ARGS_PROPERTY, args, "");//通过属性系统读取"rild.libargs"属性值argc = make_argv(args, rilArgv);}// Make sure there's a reasonable argv[0]rilArgv[0] = argv[0];//调用RIL_Init函数来初始化rild,传入参数s_rilEnv,返回RIL_RadioFunctions地址④funcs = rilInit(&s_rilEnv, argc, rilArgv);//<span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">注册客户端事件处理接口</span><span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">RIL_RadioFunctions</span><span style="font-family:'Courier New';color:#080000;line-height: 1.5; white-space: pre-wrap;">,并创建socket监听事件</span>⑤RIL_register(funcs);
done:while(1) {// sleep(UINT32_MAX) seems to return immediately on bionicsleep(0x00ffffff);}
}

在main函数中主要完成以下工作:

1.解析命令行参数,通过判断是否为模拟器采取不同的方式来读取libreference-ril.so库的存放路径;

2.使用dlopen手动装载libreference-ril.so库;

3.启动事件循环处理;

4.从libreference-ril.so库中取得RIL_Init函数地址,并使用该函数将libril.so库中的RIL_Env接口注册到libreference-ril.so库,同时将libreference-ril.so库中的RIL_RadioFunctions接口注册到到libril.so库中,建立起libril.so库与libreference-ril.so库通信桥梁;

启动事件循环处理eventLoop工作线程

建立多路I/O驱动机制的消息队列,用来接收上层发出的命令以及往Modem发送AT指令的工作,时整个RIL系统的核心部分。创建一个事件分发线程s_tid_dispatch,线程执行体为eventLoop。

hardware\ril\libril\Ril.cpp

[cpp] view plain copy
print ?
  1. extern "C" void RIL_startEventLoop(void) {  
  2.     int ret;  
  3.     pthread_attr_t attr;  
  4.     /* spin up eventLoop thread and wait for it to get started */  
  5.     s_started = 0;  
  6.     pthread_mutex_lock(&s_startupMutex);  
  7.     pthread_attr_init (&attr);  
  8.   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  
  9.   //创建一个工作线程eventLoop  
  10.   ret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);  
  11.   //确保函数返回前eventLoop线程启动运行  
  12.     while (s_started == 0) {  
  13.         pthread_cond_wait(&s_startupCond, &s_startupMutex);  
  14.     }  
  15.     pthread_mutex_unlock(&s_startupMutex);  
  16.     if (ret < 0) {  
  17.         LOGE("Failed to create dispatch thread errno:%d", errno);  
  18.         return;  
  19.     }  
  20. }  
extern "C" void RIL_startEventLoop(void) {int ret;pthread_attr_t attr;/* spin up eventLoop thread and wait for it to get started */s_started = 0;pthread_mutex_lock(&s_startupMutex);pthread_attr_init (&attr);pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);//创建一个工作线程eventLoopret = pthread_create(&s_tid_dispatch, &attr, eventLoop, NULL);//确保函数返回前eventLoop线程启动运行while (s_started == 0) {pthread_cond_wait(&s_startupCond, &s_startupMutex);}pthread_mutex_unlock(&s_startupMutex);if (ret < 0) {LOGE("Failed to create dispatch thread errno:%d", errno);return;}
}

eventLoop执行时序图:


[cpp] view plain copy
print ?
  1. static void * eventLoop(void *param) {  
  2.     int ret;  
  3.     int filedes[2];  
  4.     ril_event_init(); //初始化请求队列  
  5.     pthread_mutex_lock(&s_startupMutex);  
  6.     s_started = 1; //eventLoop线程运行标志位  
  7.     pthread_cond_broadcast(&s_startupCond);  
  8.   pthread_mutex_unlock(&s_startupMutex);  
  9.   //创建匿名管道  
  10.     ret = pipe(filedes);  
  11.     if (ret < 0) {  
  12.         LOGE("Error in pipe() errno:%d", errno);  
  13.         return NULL;  
  14.   }  
  15.   //s_fdWakeupRead为管道读端  
  16.   s_fdWakeupRead = filedes[0];  
  17.   //s_fdWakeupWrite为管道写端  
  18.   s_fdWakeupWrite = filedes[1];  
  19.   //设置管道读端为O_NONBLOCK非阻塞  
  20.   fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);  
  21.   //初始化s_wakeupfd_event结构体的内容,句柄为s_fdWakeupRead,回调函数为   processWakeupCallback  
  22.     ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL);  
  23.     ①rilEventAddWakeup (&s_wakeupfd_event);  
  24.     // Only returns on error  
  25.     ②ril_event_loop();  
  26.     LOGE ("error in event_loop_base errno:%d", errno);  
  27.     return NULL;  
  28. }  
static void * eventLoop(void *param) {int ret;int filedes[2];ril_event_init(); //初始化请求队列pthread_mutex_lock(&s_startupMutex);s_started = 1; //eventLoop线程运行标志位pthread_cond_broadcast(&s_startupCond);pthread_mutex_unlock(&s_startupMutex);//创建匿名管道ret = pipe(filedes);if (ret < 0) {LOGE("Error in pipe() errno:%d", errno);return NULL;}//s_fdWakeupRead为管道读端s_fdWakeupRead = filedes[0];//s_fdWakeupWrite为管道写端s_fdWakeupWrite = filedes[1];//设置管道读端为O_NONBLOCK非阻塞fcntl(s_fdWakeupRead, F_SETFL, O_NONBLOCK);//初始化s_wakeupfd_event结构体的内容,句柄为s_fdWakeupRead,回调函数为   processWakeupCallbackril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL);①rilEventAddWakeup (&s_wakeupfd_event);// Only returns on error②ril_event_loop();LOGE ("error in event_loop_base errno:%d", errno);return NULL;
}

在rild中定义了event的概念,Rild支持两种类型的事件:
1. 定时事件:根据事件的执行时间来启动执行,通过 ril_timer_add 添加到 time_list队列中

2. Wakeup事件:这些事件的句柄fd将加入的select IO多路复用的句柄池readFDs中,当对应的fd可读时将触发这些事件。对于处于listen端的socketfd可读表示有个客户端连接,此时需要调用accept接受连接。

事件定义如下:

[cpp] view plain copy
print ?
  1. struct ril_event {  
  2.     struct ril_event *next;  
  3.     struct ril_event *prev;  
  4.     int fd;  //文件句柄  
  5.     int index; //该事件在监控表中的索引   
  6.     bool persist; //如果是保持的,则不从watch_list 中删除  
  7.     struct timeval timeout; //任务执行时间  
  8.     ril_event_cb func; //回调事件处理函数  
  9.     void *param; //回调时参数  
  10. };  
struct ril_event {struct ril_event *next;struct ril_event *prev;int fd;  //文件句柄int index; //该事件在监控表中的索引 bool persist; //如果是保持的,则不从watch_list 中删除struct timeval timeout; //任务执行时间ril_event_cb func; //回调事件处理函数void *param; //回调时参数
};

Rild进程中的几个重要事件有


[cpp] view plain copy
print ?
  1. static struct ril_event s_commands_event;  
  2. ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs)  
  3.   
  4. static struct ril_event s_wakeupfd_event;  
  5. ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL)  
  6.   
  7. static struct ril_event s_listen_event;  
  8. ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL)  
  9.   
  10. static struct ril_event s_wake_timeout_event;  
  11. ril_timer_add(&(p_info->event), &myRelativeTime);  
  12.   
  13. static struct ril_event s_debug_event;  
  14. ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL)  
static struct ril_event s_commands_event;
ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs)static struct ril_event s_wakeupfd_event;
ril_event_set (&s_wakeupfd_event, s_fdWakeupRead, true,processWakeupCallback, NULL)static struct ril_event s_listen_event;
ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL)static struct ril_event s_wake_timeout_event;
ril_timer_add(&(p_info->event), &myRelativeTime);static struct ril_event s_debug_event;
ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL)

在RILD中定义了三个事件队列,用于处理不同的事件:

/事件监控队列

static struct ril_event * watch_table[MAX_FD_EVENTS];

//定时事件队列

static struct ril_event timer_list;

//处理事件队列

static struct ril_event pending_list; //待处理事件队列,事件已经触发,需要所回调处理的事件


添加事件
1.添加 Wakeup 事件
 
[cpp] view plain copy
print ?
  1. static void rilEventAddWakeup(struct ril_event *ev) {  
  2.     ril_event_add(ev); //向监控表watch_table添加一个s_wakeupfd_event事件  
  3.     triggerEvLoop(); //向管道s_fdWakeupWrite中写入之来触发事件循环  
  4. }  
static void rilEventAddWakeup(struct ril_event *ev) {ril_event_add(ev); //向监控表watch_table添加一个s_wakeupfd_event事件triggerEvLoop(); //向管道s_fdWakeupWrite中写入之来触发事件循环
}

[objc] view plain copy
print ?
  1. void ril_event_add(struct ril_event * ev)  
  2. {  
  3.     dlog("~~~~ +ril_event_add ~~~~");  
  4.     MUTEX_ACQUIRE();  
  5.     for (int i = 0; i < MAX_FD_EVENTS; i++) { //遍历监控表watch_table  
  6.         if (watch_table[i] == NULL) { //从监控表中查找空闲的索引,然后把该任务加入到监控表中  
  7.             watch_table[i] = ev; //向监控表中添加事件  
  8.             ev->index = i; //事件的索引设置为在监控表中的索引  
  9.             dlog("~~~~ added at %d ~~~~", i);  
  10.             dump_event(ev);  
  11.             FD_SET(ev->fd, &readFds); //将添加的事件对应的句柄添加到句柄池readFds中  
  12.             if (ev->fd >= nfds) nfds = ev->fd+1//修改句柄最大值  
  13.             dlog("~~~~ nfds = %d ~~~~", nfds);  
  14.             break;  
  15.         }  
  16.     }  
  17.     MUTEX_RELEASE();  
  18.     dlog("~~~~ -ril_event_add ~~~~");  
  19. }  
void ril_event_add(struct ril_event * ev)
{dlog("~~~~ +ril_event_add ~~~~");MUTEX_ACQUIRE();for (int i = 0; i < MAX_FD_EVENTS; i++) { //遍历监控表watch_tableif (watch_table[i] == NULL) { //从监控表中查找空闲的索引,然后把该任务加入到监控表中watch_table[i] = ev; //向监控表中添加事件ev->index = i; //事件的索引设置为在监控表中的索引dlog("~~~~ added at %d ~~~~", i);dump_event(ev);FD_SET(ev->fd, &readFds); //将添加的事件对应的句柄添加到句柄池readFds中if (ev->fd >= nfds) nfds = ev->fd+1; //修改句柄最大值dlog("~~~~ nfds = %d ~~~~", nfds);break;}}MUTEX_RELEASE();dlog("~~~~ -ril_event_add ~~~~");
}

2.添加定时事件

[cpp] view plain copy
print ?
  1. void ril_timer_add(struct ril_event * ev, struct timeval * tv)  
  2. {  
  3.     dlog("~~~~ +ril_timer_add ~~~~");  
  4.     MUTEX_ACQUIRE();  
  5.     struct ril_event * list;  
  6.     if (tv != NULL) {  
  7.         list = timer_list.next;  
  8.         ev->fd = -1; // make sure fd is invalid  
  9.         struct timeval now;  
  10.         getNow(&now);  
  11.         timeradd(&now, tv, &ev->timeout);  
  12.         // keep list sorted  
  13.         while (timercmp(&list->timeout, &ev->timeout, < ) && (list != &timer_list)) {  
  14.             list = list->next;  
  15.         }  
  16.         // list now points to the first event older than ev  
  17.         addToList(ev, list);  
  18.     }  
  19.     MUTEX_RELEASE();  
  20.     dlog("~~~~ -ril_timer_add ~~~~");  
  21. }  
void ril_timer_add(struct ril_event * ev, struct timeval * tv)
{dlog("~~~~ +ril_timer_add ~~~~");MUTEX_ACQUIRE();struct ril_event * list;if (tv != NULL) {list = timer_list.next;ev->fd = -1; // make sure fd is invalidstruct timeval now;getNow(&now);timeradd(&now, tv, &ev->timeout);// keep list sortedwhile (timercmp(&list->timeout, &ev->timeout, < ) && (list != &timer_list)) {list = list->next;}// list now points to the first event older than evaddToList(ev, list);}MUTEX_RELEASE();dlog("~~~~ -ril_timer_add ~~~~");
}
触发事件

[cpp] view plain copy
print ?
  1. static void triggerEvLoop() {  
  2.     int ret;  
  3.   if (!pthread_equal(pthread_self(), s_tid_dispatch)) { //如果当前线程ID不等于事件分发线程eventLoop的线程ID  
  4.       do {  
  5.             ret = write (s_fdWakeupWrite, " ", 1); //向管道写端写入值1来触发eventLoop事件循环  
  6.          } while (ret < 0 && errno == EINTR);  
  7.     }  
  8. }  
static void triggerEvLoop() {int ret;if (!pthread_equal(pthread_self(), s_tid_dispatch)) { //如果当前线程ID不等于事件分发线程eventLoop的线程IDdo {ret = write (s_fdWakeupWrite, " ", 1); //向管道写端写入值1来触发eventLoop事件循环} while (ret < 0 && errno == EINTR);}
}
处理事件
[cpp] view plain copy
print ?
  1. void ril_event_loop()  
  2. {  
  3.     int n;  
  4.     fd_set rfds;  
  5.     struct timeval tv;  
  6.     struct timeval * ptv;  
  7.     for (;;) {  
  8.         memcpy(&rfds, &readFds, sizeof(fd_set));  
  9.         if (-1 == calcNextTimeout(&tv)) {  
  10.             dlog("~~~~ no timers; blocking indefinitely ~~~~");  
  11.             ptv = NULL;  
  12.         } else {  
  13.             dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec);  
  14.             ptv = &tv;  
  15.         }  
  16.         //使用select 函数等待在FDS 上,只要FDS 中记录的设备有数据到来,select 就会设置相应的标志位并返回。readFDS 记录了所有的事件相关设备句柄。readFDS 中句柄是在在AddEvent 加入的。  
  17.         printReadies(&rfds);  
  18.         n = select(nfds, &rfds, NULL, NULL, ptv);   
  19.         printReadies(&rfds);  
  20.         dlog("~~~~ %d events fired ~~~~", n);  
  21.         if (n < 0) {  
  22.             if (errno == EINTR) continue;  
  23.             LOGE("ril_event: select error (%d)", errno);  
  24.             return;  
  25.         }  
  26.         processTimeouts(); //从timer_list中查询执行时间已到的事件,并添加到pending_list中  
  27.         processReadReadies(&rfds, n); //从watch_table中查询数据可读的事件,并添加到pending_list中去处理,如果该事件不是持久事件,则同时从watch_table中删除  
  28.         //遍历pending_list,调用事件处理回调函数处理所有事件  
  29.         firePending();  
  30.     }  
  31. }  
void ril_event_loop()
{int n;fd_set rfds;struct timeval tv;struct timeval * ptv;for (;;) {memcpy(&rfds, &readFds, sizeof(fd_set));if (-1 == calcNextTimeout(&tv)) {dlog("~~~~ no timers; blocking indefinitely ~~~~");ptv = NULL;} else {dlog("~~~~ blocking for %ds + %dus ~~~~", (int)tv.tv_sec, (int)tv.tv_usec);ptv = &tv;}//使用select 函数等待在FDS 上,只要FDS 中记录的设备有数据到来,select 就会设置相应的标志位并返回。readFDS 记录了所有的事件相关设备句柄。readFDS 中句柄是在在AddEvent 加入的。printReadies(&rfds);n = select(nfds, &rfds, NULL, NULL, ptv); printReadies(&rfds);dlog("~~~~ %d events fired ~~~~", n);if (n < 0) {if (errno == EINTR) continue;LOGE("ril_event: select error (%d)", errno);return;}processTimeouts(); //从timer_list中查询执行时间已到的事件,并添加到pending_list中processReadReadies(&rfds, n); //从watch_table中查询数据可读的事件,并添加到pending_list中去处理,如果该事件不是持久事件,则同时从watch_table中删除//遍历pending_list,调用事件处理回调函数处理所有事件firePending();}
}

在eventLoop工作线程中,循环处理到来的事件及定时结束事件,整个处理流程如下图所示:

首先通过Linux中的select多路I/O复用对句柄池中的所有句柄进行监控,当有事件到来时select返回,否则阻塞。当select返回时,表示有事件的到来,通过调用processTimeouts函数来处理超时事件,处理方式是遍历time_list链表以查询超时事件,并将超时事件移入到pending_list链表中,接着调用processReadReadies函数来处理触发的事件,处理方式为遍历watch_table列表以查询触发的事件,并将触发的事件移入到pending_list链表中,如果该事件不是持久事件,还需要从watch_table列表中移除,当查询完两种待处理的事件并放入到pending_list链表中后,调用firePending函数对待处理的事件进行集中处理,处理方式为遍历链表,调用每一个事件的回调函数。

 1.超时事件查询
[cpp] view plain copy
print ?
  1. static void processTimeouts()  
  2. {  
  3.     dlog("~~~~ +processTimeouts ~~~~");  
  4.     MUTEX_ACQUIRE();  
  5.     struct timeval now;  
  6.     struct ril_event * tev = timer_list.next;  
  7.     struct ril_event * next;  
  8.     getNow(&now); //获取当前时间  
  9.   dlog("~~~~ Looking for timers <= %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);  
  10.   //如果当前时间大于事件的超时时间,则将该事件从timer_list中移除,添加到pending_list  
  11.     while ((tev != &timer_list) && (timercmp(&now, &tev->timeout, >))) {  
  12.         dlog("~~~~ firing timer ~~~~");  
  13.         next = tev->next;  
  14.         removeFromList(tev); //从timer_list中移除事件  
  15.         addToList(tev, &pending_list); //将事件添加到pending_list  
  16.         tev = next;  
  17.     }  
  18.     MUTEX_RELEASE();  
  19.     dlog("~~~~ -processTimeouts ~~~~");  
  20. }  
static void processTimeouts()
{dlog("~~~~ +processTimeouts ~~~~");MUTEX_ACQUIRE();struct timeval now;struct ril_event * tev = timer_list.next;struct ril_event * next;getNow(&now); //获取当前时间dlog("~~~~ Looking for timers <= %ds + %dus ~~~~", (int)now.tv_sec, (int)now.tv_usec);//如果当前时间大于事件的超时时间,则将该事件从timer_list中移除,添加到pending_listwhile ((tev != &timer_list) && (timercmp(&now, &tev->timeout, >))) {dlog("~~~~ firing timer ~~~~");next = tev->next;removeFromList(tev); //从timer_list中移除事件addToList(tev, &pending_list); //将事件添加到pending_listtev = next;}MUTEX_RELEASE();dlog("~~~~ -processTimeouts ~~~~");
}
2.可读事件查询
[cpp] view plain copy
print ?
  1. static void processReadReadies(fd_set * rfds, int n)  
  2. {  
  3.     dlog("~~~~ +processReadReadies (%d) ~~~~", n);  
  4.   MUTEX_ACQUIRE();   
  5.   //遍历watch_table数组,根据select返回的句柄n查找对应的事件  
  6.     for (int i = 0; (i < MAX_FD_EVENTS) && (n > 0); i++) {  
  7.         struct ril_event * rev = watch_table[i]; //得到相应的事件  
  8.         if (rev != NULL && FD_ISSET(rev->fd, rfds)) {  
  9.             addToList(rev, &pending_list); //将该事件添加到pending_list中  
  10.             if (rev->persist == false) { //如果该事件不是持久事件还要从watch_table中移除  
  11.                 removeWatch(rev, i);  
  12.             }  
  13.             n--;  
  14.         }  
  15.     }  
  16.     MUTEX_RELEASE();  
  17.     dlog("~~~~ -processReadReadies (%d) ~~~~", n);  
  18. }  
static void processReadReadies(fd_set * rfds, int n)
{dlog("~~~~ +processReadReadies (%d) ~~~~", n);MUTEX_ACQUIRE(); //遍历watch_table数组,根据select返回的句柄n查找对应的事件for (int i = 0; (i < MAX_FD_EVENTS) && (n > 0); i++) {struct ril_event * rev = watch_table[i]; //得到相应的事件if (rev != NULL && FD_ISSET(rev->fd, rfds)) {addToList(rev, &pending_list); //将该事件添加到pending_list中if (rev->persist == false) { //如果该事件不是持久事件还要从watch_table中移除removeWatch(rev, i);}n--;}}MUTEX_RELEASE();dlog("~~~~ -processReadReadies (%d) ~~~~", n);
}
3.事件处理
[cpp] view plain copy
print ?
  1. static void firePending()  
  2. {  
  3.     dlog("~~~~ +firePending ~~~~");  
  4.     struct ril_event * ev = pending_list.next;  
  5.     while (ev != &pending_list) { //遍历pending_list链表,处理链表中的所有事件  
  6.         struct ril_event * next = ev->next;  
  7.         removeFromList(ev); //将处理完的事件从pending_list中移除  
  8.         ev->func(ev->fd, 0, ev->param); //调用事件处理的回调函数  
  9.         ev = next;  
  10.     }  
  11.     dlog("~~~~ -firePending ~~~~");  
  12. }  
static void firePending()
{dlog("~~~~ +firePending ~~~~");struct ril_event * ev = pending_list.next;while (ev != &pending_list) { //遍历pending_list链表,处理链表中的所有事件struct ril_event * next = ev->next;removeFromList(ev); //将处理完的事件从pending_list中移除ev->func(ev->fd, 0, ev->param); //调用事件处理的回调函数ev = next;}dlog("~~~~ -firePending ~~~~");
}
RIL_Env定义

hardware\ril\include\telephony\ril.h

[cpp] view plain copy
print ?
  1. struct RIL_Env {  
  2.     //动态库完成请求后通知处理结果的接口  
  3.   void (*OnRequestComplete)(RIL_Token t, RIL_Errno e,void *response, size_t responselen);  
  4.     //动态库unSolicited Response通知接口  
  5.   void (*OnUnsolicitedResponse)(int unsolResponse, const void *data,size_t datalen);  
  6.     //向Rild提交一个超时任务的接口  
  7.     void (*RequestTimedCallback) (RIL_TimedCallback callback,void *param, const struct timeval *relativeTime);  
  8. };  
struct RIL_Env {//动态库完成请求后通知处理结果的接口void (*OnRequestComplete)(RIL_Token t, RIL_Errno e,void *response, size_t responselen);//动态库unSolicited Response通知接口void (*OnUnsolicitedResponse)(int unsolResponse, const void *data,size_t datalen);//向Rild提交一个超时任务的接口void (*RequestTimedCallback) (RIL_TimedCallback callback,void *param, const struct timeval *relativeTime);
};
hardware\ril\rild\rild.c

s_rilEnv变量定义:

[cpp] view plain copy
print ?
  1. static struct RIL_Env s_rilEnv = {  
  2.     RIL_onRequestComplete,  
  3.     RIL_onUnsolicitedResponse,  
  4.     RIL_requestTimedCallback  
  5. };  
static struct RIL_Env s_rilEnv = {RIL_onRequestComplete,RIL_onUnsolicitedResponse,RIL_requestTimedCallback
};
在hardware\ril\libril\ril.cpp中实现了RIL_Env的各个接口函数

1.RIL_onRequestComplete

[cpp] view plain copy
print ?
  1. extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {  
  2.     RequestInfo *pRI;  
  3.     int ret;  
  4.     size_t errorOffset;  
  5.     pRI = (RequestInfo *)t;  
  6.     if (!checkAndDequeueRequestInfo(pRI)) {  
  7.         LOGE ("RIL_onRequestComplete: invalid RIL_Token");  
  8.         return;  
  9.     }  
  10.     if (pRI->local > 0) {  
  11.         // Locally issued command...void only!  
  12.         // response does not go back up the command socket  
  13.         LOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));  
  14.         goto done;  
  15.     }  
  16.     appendPrintBuf("[%04d]< %s",pRI->token, requestToString(pRI->pCI->requestNumber));  
  17.     if (pRI->cancelled == 0) {  
  18.         Parcel p;  
  19.         p.writeInt32 (RESPONSE_SOLICITED);  
  20.         p.writeInt32 (pRI->token);  
  21.         errorOffset = p.dataPosition();  
  22.         p.writeInt32 (e);  
  23.         if (response != NULL) {  
  24.             // there is a response payload, no matter success or not.  
  25.             ret = pRI->pCI->responseFunction(p, response, responselen);  
  26.             /* if an error occurred, rewind and mark it */  
  27.             if (ret != 0) {  
  28.                 p.setDataPosition(errorOffset);  
  29.                 p.writeInt32 (ret);  
  30.             }  
  31.         }  
  32.         if (e != RIL_E_SUCCESS) {  
  33.             appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));  
  34.         }  
  35.         if (s_fdCommand < 0) {  
  36.             LOGD ("RIL onRequestComplete: Command channel closed");  
  37.         }  
  38.         sendResponse(p);  
  39.     }  
  40. done:  
  41.     free(pRI);  
  42. }  
extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {RequestInfo *pRI;int ret;size_t errorOffset;pRI = (RequestInfo *)t;if (!checkAndDequeueRequestInfo(pRI)) {LOGE ("RIL_onRequestComplete: invalid RIL_Token");return;}if (pRI->local > 0) {// Locally issued command...void only!// response does not go back up the command socketLOGD("C[locl]< %s", requestToString(pRI->pCI->requestNumber));goto done;}appendPrintBuf("[%04d]< %s",pRI->token, requestToString(pRI->pCI->requestNumber));if (pRI->cancelled == 0) {Parcel p;p.writeInt32 (RESPONSE_SOLICITED);p.writeInt32 (pRI->token);errorOffset = p.dataPosition();p.writeInt32 (e);if (response != NULL) {// there is a response payload, no matter success or not.ret = pRI->pCI->responseFunction(p, response, responselen);/* if an error occurred, rewind and mark it */if (ret != 0) {p.setDataPosition(errorOffset);p.writeInt32 (ret);}}if (e != RIL_E_SUCCESS) {appendPrintBuf("%s fails by %s", printBuf, failCauseToString(e));}if (s_fdCommand < 0) {LOGD ("RIL onRequestComplete: Command channel closed");}sendResponse(p);}
done:free(pRI);
}

通过调用responseXXX将底层响应传给客户进程

2.RIL_onUnsolicitedResponse

[cpp] view plain copy
print ?
  1. extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, void *data,  
  2.                                 size_t datalen)  
  3. {  
  4.     int unsolResponseIndex;  
  5.     int ret;  
  6.     int64_t timeReceived = 0;  
  7.     bool shouldScheduleTimeout = false;  
  8.     if (s_registerCalled == 0) {  
  9.         // Ignore RIL_onUnsolicitedResponse before RIL_register  
  10.         LOGW("RIL_onUnsolicitedResponse called before RIL_register");  
  11.         return;  
  12.     }  
  13.     unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;  
  14.     if ((unsolResponseIndex < 0)  
  15.         || (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) {  
  16.         LOGE("unsupported unsolicited response code %d", unsolResponse);  
  17.         return;  
  18.     }  
  19.     // Grab a wake lock if needed for this reponse,  
  20.     // as we exit we'll either release it immediately  
  21.     // or set a timer to release it later.  
  22.     switch (s_unsolResponses[unsolResponseIndex].wakeType) {  
  23.         case WAKE_PARTIAL:  
  24.             grabPartialWakeLock();  
  25.             shouldScheduleTimeout = true;  
  26.         break;  
  27.         case DONT_WAKE:  
  28.         default:  
  29.             // No wake lock is grabed so don't set timeout  
  30.             shouldScheduleTimeout = false;  
  31.             break;  
  32.     }  
  33.     // Mark the time this was received, doing this  
  34.     // after grabing the wakelock incase getting  
  35.     // the elapsedRealTime might cause us to goto  
  36.     // sleep.  
  37.     if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {  
  38.         timeReceived = elapsedRealtime();  
  39.     }  
  40.     appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));  
  41.     Parcel p;  
  42.     p.writeInt32 (RESPONSE_UNSOLICITED);  
  43.     p.writeInt32 (unsolResponse);  
  44.     ret = s_unsolResponses[unsolResponseIndex].responseFunction(p, data, datalen);  
  45.     if (ret != 0) {  
  46.         // Problem with the response. Don't continue;  
  47.         goto error_exit;  
  48.     }  
  49.     // some things get more payload  
  50.     switch(unsolResponse) {  
  51.         case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:  
  52.             p.writeInt32(s_callbacks.onStateRequest());  
  53.             appendPrintBuf("%s {%s}", printBuf,  
  54.                 radioStateToString(s_callbacks.onStateRequest()));  
  55.         break;  
  56.         case RIL_UNSOL_NITZ_TIME_RECEIVED:  
  57.             // Store the time that this was received so the  
  58.             // handler of this message can account for  
  59.             // the time it takes to arrive and process. In  
  60.             // particular the system has been known to sleep  
  61.             // before this message can be processed.  
  62.             p.writeInt64(timeReceived);  
  63.         break;  
  64.     }  
  65.     ret = sendResponse(p);  
  66.     if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {  
  67.         // Unfortunately, NITZ time is not poll/update like everything  
  68.         // else in the system. So, if the upstream client isn't connected,  
  69.         // keep a copy of the last NITZ response (with receive time noted  
  70.         // above) around so we can deliver it when it is connected  
  71.         if (s_lastNITZTimeData != NULL) {  
  72.             free (s_lastNITZTimeData);  
  73.             s_lastNITZTimeData = NULL;  
  74.         }  
  75.         s_lastNITZTimeData = malloc(p.dataSize());  
  76.         s_lastNITZTimeDataSize = p.dataSize();  
  77.         memcpy(s_lastNITZTimeData, p.data(), p.dataSize());  
  78.     }  
  79.     // For now, we automatically go back to sleep after TIMEVAL_WAKE_TIMEOUT  
  80.     // FIXME The java code should handshake here to release wake lock  
  81.     if (shouldScheduleTimeout) {  
  82.         // Cancel the previous request  
  83.         if (s_last_wake_timeout_info != NULL) {  
  84.             s_last_wake_timeout_info->userParam = (void *)1;  
  85.         }  
  86.         s_last_wake_timeout_info= internalRequestTimedCallback(wakeTimeoutCallback, NULL,  
  87.                                             &TIMEVAL_WAKE_TIMEOUT);  
  88.     }  
  89.     return;  
  90. error_exit:  
  91.     if (shouldScheduleTimeout) {  
  92.         releaseWakeLock();  
  93.     }  
  94. }  
extern "C" void RIL_onUnsolicitedResponse(int unsolResponse, void *data,size_t datalen)
{int unsolResponseIndex;int ret;int64_t timeReceived = 0;bool shouldScheduleTimeout = false;if (s_registerCalled == 0) {// Ignore RIL_onUnsolicitedResponse before RIL_registerLOGW("RIL_onUnsolicitedResponse called before RIL_register");return;}unsolResponseIndex = unsolResponse - RIL_UNSOL_RESPONSE_BASE;if ((unsolResponseIndex < 0)|| (unsolResponseIndex >= (int32_t)NUM_ELEMS(s_unsolResponses))) {LOGE("unsupported unsolicited response code %d", unsolResponse);return;}// Grab a wake lock if needed for this reponse,// as we exit we'll either release it immediately// or set a timer to release it later.switch (s_unsolResponses[unsolResponseIndex].wakeType) {case WAKE_PARTIAL:grabPartialWakeLock();shouldScheduleTimeout = true;break;case DONT_WAKE:default:// No wake lock is grabed so don't set timeoutshouldScheduleTimeout = false;break;}// Mark the time this was received, doing this// after grabing the wakelock incase getting// the elapsedRealTime might cause us to goto// sleep.if (unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {timeReceived = elapsedRealtime();}appendPrintBuf("[UNSL]< %s", requestToString(unsolResponse));Parcel p;p.writeInt32 (RESPONSE_UNSOLICITED);p.writeInt32 (unsolResponse);ret = s_unsolResponses[unsolResponseIndex].responseFunction(p, data, datalen);if (ret != 0) {// Problem with the response. Don't continue;goto error_exit;}// some things get more payloadswitch(unsolResponse) {case RIL_UNSOL_RESPONSE_RADIO_STATE_CHANGED:p.writeInt32(s_callbacks.onStateRequest());appendPrintBuf("%s {%s}", printBuf,radioStateToString(s_callbacks.onStateRequest()));break;case RIL_UNSOL_NITZ_TIME_RECEIVED:// Store the time that this was received so the// handler of this message can account for// the time it takes to arrive and process. In// particular the system has been known to sleep// before this message can be processed.p.writeInt64(timeReceived);break;}ret = sendResponse(p);if (ret != 0 && unsolResponse == RIL_UNSOL_NITZ_TIME_RECEIVED) {// Unfortunately, NITZ time is not poll/update like everything// else in the system. So, if the upstream client isn't connected,// keep a copy of the last NITZ response (with receive time noted// above) around so we can deliver it when it is connectedif (s_lastNITZTimeData != NULL) {free (s_lastNITZTimeData);s_lastNITZTimeData = NULL;}s_lastNITZTimeData = malloc(p.dataSize());s_lastNITZTimeDataSize = p.dataSize();memcpy(s_lastNITZTimeData, p.data(), p.dataSize());}// For now, we automatically go back to sleep after TIMEVAL_WAKE_TIMEOUT// FIXME The java code should handshake here to release wake lockif (shouldScheduleTimeout) {// Cancel the previous requestif (s_last_wake_timeout_info != NULL) {s_last_wake_timeout_info->userParam = (void *)1;}s_last_wake_timeout_info= internalRequestTimedCallback(wakeTimeoutCallback, NULL,&TIMEVAL_WAKE_TIMEOUT);}return;
error_exit:if (shouldScheduleTimeout) {releaseWakeLock();}
}
这个函数处理modem 从网络端接收到的各种事件,如网络信号变化,拨入的电话,收到短信等。然后传给客户进程。

3.RIL_requestTimedCallback

[cpp] view plain copy
print ?
  1. extern "C" void RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,  
  2.                                 const struct timeval *relativeTime) {  
  3.     internalRequestTimedCallback (callback, param, relativeTime);  
  4. }  
extern "C" void RIL_requestTimedCallback (RIL_TimedCallback callback, void *param,const struct timeval *relativeTime) {internalRequestTimedCallback (callback, param, relativeTime);
}
[cpp] view plain copy
print ?
  1. static UserCallbackInfo *internalRequestTimedCallback (RIL_TimedCallback callback, void *param,  
  2.                                 const struct timeval *relativeTime)  
  3. {  
  4.     struct timeval myRelativeTime;  
  5.     UserCallbackInfo *p_info;  
  6.     p_info = (UserCallbackInfo *) malloc (sizeof(UserCallbackInfo));  
  7.     p_info->p_callback = callback;  
  8.     p_info->userParam = param;  
  9.     if (relativeTime == NULL) {  
  10.         /* treat null parameter as a 0 relative time */  
  11.         memset (&myRelativeTime, 0, sizeof(myRelativeTime));  
  12.     } else {  
  13.         /* FIXME I think event_add's tv param is really const anyway */  
  14.         memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));  
  15.     }  
  16.     ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);  
  17.     ril_timer_add(&(p_info->event), &myRelativeTime);  
  18.     triggerEvLoop();  
  19.     return p_info;  
  20. }  
static UserCallbackInfo *internalRequestTimedCallback (RIL_TimedCallback callback, void *param,const struct timeval *relativeTime)
{struct timeval myRelativeTime;UserCallbackInfo *p_info;p_info = (UserCallbackInfo *) malloc (sizeof(UserCallbackInfo));p_info->p_callback = callback;p_info->userParam = param;if (relativeTime == NULL) {/* treat null parameter as a 0 relative time */memset (&myRelativeTime, 0, sizeof(myRelativeTime));} else {/* FIXME I think event_add's tv param is really const anyway */memcpy (&myRelativeTime, relativeTime, sizeof(myRelativeTime));}ril_event_set(&(p_info->event), -1, false, userTimerCallback, p_info);ril_timer_add(&(p_info->event), &myRelativeTime);triggerEvLoop();return p_info;
}
RIL_RadioFunctions定义

客户端向Rild发送请求的接口,由各手机厂商实现。

hardware\ril\include\telephony\Ril.h

[cpp] view plain copy
print ?
  1. typedef struct {  
  2.     int version; //Rild版本  
  3.     RIL_RequestFunc onRequest; //AP请求接口  
  4.     RIL_RadioStateRequest onStateRequest;//BP状态查询  
  5.     RIL_Supports supports;  
  6.     RIL_Cancel onCancel;  
  7.     RIL_GetVersion getVersion;//动态库版本  
  8. } RIL_RadioFunctions;  
typedef struct {int version; //Rild版本RIL_RequestFunc onRequest; //AP请求接口RIL_RadioStateRequest onStateRequest;//BP状态查询RIL_Supports supports;RIL_Cancel onCancel;RIL_GetVersion getVersion;//动态库版本
} RIL_RadioFunctions;
[cpp] view plain copy
print ?
  1. static const RIL_RadioFunctions s_callbacks = {  
  2.     RIL_VERSION,  
  3.     onRequest,  
  4.     currentState,  
  5.     onSupports,  
  6.     onCancel,  
  7.     getVersion  
  8. };  
static const RIL_RadioFunctions s_callbacks = {RIL_VERSION,onRequest,currentState,onSupports,onCancel,getVersion
};
在hardware\ril\reference-ril\reference-ril.c中实现了RIL_RadioFunctions的各个接口函数

1.onRequest

[objc] view plain copy
print ?
  1. static void onRequest (int request, voidvoid *data, size_t datalen, RIL_Token t)  
  2. {  
  3.     ATResponse *p_response;  
  4.     int err;  
  5.     LOGD("onRequest: %s", requestToString(request));  
  6.     /* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS 
  7.      * when RADIO_STATE_UNAVAILABLE. 
  8.      */  
  9.     if (sState == RADIO_STATE_UNAVAILABLE  
  10.         && request != RIL_REQUEST_GET_SIM_STATUS  
  11.     ) {  
  12.         RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL0);  
  13.         return;  
  14.     }  
  15.     /* Ignore all non-power requests when RADIO_STATE_OFF 
  16.      * (except RIL_REQUEST_GET_SIM_STATUS) 
  17.      */  
  18.     if (sState == RADIO_STATE_OFF&& !(request == RIL_REQUEST_RADIO_POWER  
  19.             || request == RIL_REQUEST_GET_SIM_STATUS)  
  20.     ) {  
  21.         RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL0);  
  22.         return;  
  23.     }  
  24.     switch (request) {  
  25.         case RIL_REQUEST_GET_SIM_STATUS: {  
  26.             RIL_CardStatus *p_card_status;  
  27.             charchar *p_buffer;  
  28.             int buffer_size;  
  29.             int result = getCardStatus(&p_card_status);  
  30.             if (result == RIL_E_SUCCESS) {  
  31.                 p_buffer = (charchar *)p_card_status;  
  32.                 buffer_size = sizeof(*p_card_status);  
  33.             } else {  
  34.                 p_buffer = NULL;  
  35.                 buffer_size = 0;  
  36.             }  
  37.             RIL_onRequestComplete(t, result, p_buffer, buffer_size);  
  38.             freeCardStatus(p_card_status);  
  39.             break;  
  40.         }  
  41.         case RIL_REQUEST_GET_CURRENT_CALLS:  
  42.             requestGetCurrentCalls(data, datalen, t);  
  43.             break;  
  44.         case RIL_REQUEST_DIAL:  
  45.             requestDial(data, datalen, t);  
  46.             break;  
  47.         case RIL_REQUEST_HANGUP:  
  48.             requestHangup(data, datalen, t);  
  49.             break;  
  50.         case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:  
  51.             // 3GPP 22.030 6.5.5  
  52.             // "Releases all held calls or sets User Determined User Busy  
  53.             //  (UDUB) for a waiting call."  
  54.             at_send_command("AT+CHLD=0"NULL);  
  55.             /* success or failure is ignored by the upper layer here. 
  56.                it will call GET_CURRENT_CALLS and determine success that way */  
  57.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  58.             break;  
  59.         case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:  
  60.             // 3GPP 22.030 6.5.5  
  61.             // "Releases all active calls (if any exist) and accepts  
  62.             //  the other (held or waiting) call."  
  63.             at_send_command("AT+CHLD=1"NULL);  
  64.             /* success or failure is ignored by the upper layer here. 
  65.                it will call GET_CURRENT_CALLS and determine success that way */  
  66.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  67.             break;  
  68.         case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:  
  69.             // 3GPP 22.030 6.5.5  
  70.             // "Places all active calls (if any exist) on hold and accepts  
  71.             //  the other (held or waiting) call."  
  72.             at_send_command("AT+CHLD=2"NULL);  
  73.   
  74. #ifdef WORKAROUND_ERRONEOUS_ANSWER  
  75.             s_expectAnswer = 1;  
  76. #endif /* WORKAROUND_ERRONEOUS_ANSWER */  
  77.             /* success or failure is ignored by the upper layer here. 
  78.                it will call GET_CURRENT_CALLS and determine success that way */  
  79.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  80.             break;  
  81.         case RIL_REQUEST_ANSWER:  
  82.             at_send_command("ATA"NULL);  
  83. #ifdef WORKAROUND_ERRONEOUS_ANSWER  
  84.             s_expectAnswer = 1;  
  85. #endif /* WORKAROUND_ERRONEOUS_ANSWER */  
  86.             /* success or failure is ignored by the upper layer here. 
  87.                it will call GET_CURRENT_CALLS and determine success that way */  
  88.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  89.             break;  
  90.         case RIL_REQUEST_CONFERENCE:  
  91.             // 3GPP 22.030 6.5.5  
  92.             // "Adds a held call to the conversation"  
  93.             at_send_command("AT+CHLD=3"NULL);  
  94.             /* success or failure is ignored by the upper layer here. 
  95.                it will call GET_CURRENT_CALLS and determine success that way */  
  96.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  97.             break;  
  98.         case RIL_REQUEST_UDUB:  
  99.             /* user determined user busy */  
  100.             /* sometimes used: ATH */  
  101.             at_send_command("ATH"NULL);  
  102.             /* success or failure is ignored by the upper layer here. 
  103.                it will call GET_CURRENT_CALLS and determine success that way */  
  104.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  105.             break;  
  106.         case RIL_REQUEST_SEPARATE_CONNECTION:  
  107.             {  
  108.                 char  cmd[12];  
  109.                 int   party = ((int*)data)[0];  
  110.                 // Make sure that party is in a valid range.  
  111.                 // (Note: The Telephony middle layer imposes a range of 1 to 7.  
  112.                 // It's sufficient for us to just make sure it's single digit.)  
  113.                 if (party > 0 && party < 10) {  
  114.                     sprintf(cmd, "AT+CHLD=2%d", party);  
  115.                     at_send_command(cmd, NULL);  
  116.                     RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  117.                 } else {  
  118.                     RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL0);  
  119.                 }  
  120.             }  
  121.             break;  
  122.         case RIL_REQUEST_SIGNAL_STRENGTH:  
  123.             requestSignalStrength(data, datalen, t);  
  124.             break;  
  125.         case RIL_REQUEST_REGISTRATION_STATE:  
  126.         case RIL_REQUEST_GPRS_REGISTRATION_STATE:  
  127.             requestRegistrationState(request, data, datalen, t);  
  128.             break;  
  129.         case RIL_REQUEST_OPERATOR:  
  130.             requestOperator(data, datalen, t);  
  131.             break;  
  132.         case RIL_REQUEST_RADIO_POWER:  
  133.             requestRadioPower(data, datalen, t);  
  134.             break;  
  135.         case RIL_REQUEST_DTMF: {  
  136.             char c = ((charchar *)data)[0];  
  137.             charchar *cmd;  
  138.             asprintf(&cmd, "AT+VTS=%c", (int)c);  
  139.             at_send_command(cmd, NULL);  
  140.             free(cmd);  
  141.             RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  142.             break;  
  143.         }  
  144.         case RIL_REQUEST_SEND_SMS:  
  145.             requestSendSMS(data, datalen, t);  
  146.             break;  
  147.         case RIL_REQUEST_SETUP_DATA_CALL:  
  148.             requestSetupDataCall(data, datalen, t);  
  149.             break;  
  150.         case RIL_REQUEST_SMS_ACKNOWLEDGE:  
  151.             requestSMSAcknowledge(data, datalen, t);  
  152.             break;  
  153.         case RIL_REQUEST_GET_IMSI:  
  154.             p_response = NULL;  
  155.             err = at_send_command_numeric("AT+CIMI", &p_response);  
  156.             if (err < 0 || p_response->success == 0) {  
  157.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL0);  
  158.             } else {  
  159.                 RIL_onRequestComplete(t, RIL_E_SUCCESS,  
  160.                     p_response->p_intermediates->line, sizeof(charchar *));  
  161.             }  
  162.             at_response_free(p_response);  
  163.             break;  
  164.         case RIL_REQUEST_GET_IMEI:  
  165.             p_response = NULL;  
  166.             err = at_send_command_numeric("AT+CGSN", &p_response);  
  167.   
  168.             if (err < 0 || p_response->success == 0) {  
  169.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL0);  
  170.             } else {  
  171.                 RIL_onRequestComplete(t, RIL_E_SUCCESS,  
  172.                     p_response->p_intermediates->line, sizeof(charchar *));  
  173.             }  
  174.             at_response_free(p_response);  
  175.             break;  
  176.         case RIL_REQUEST_SIM_IO:  
  177.             requestSIM_IO(data,datalen,t);  
  178.             break;  
  179.         case RIL_REQUEST_SEND_USSD:  
  180.             requestSendUSSD(data, datalen, t);  
  181.             break;  
  182.         case RIL_REQUEST_CANCEL_USSD:  
  183.             p_response = NULL;  
  184.             err = at_send_command_numeric("AT+CUSD=2", &p_response);  
  185.             if (err < 0 || p_response->success == 0) {  
  186.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL0);  
  187.             } else {  
  188.                 RIL_onRequestComplete(t, RIL_E_SUCCESS,  
  189.                     p_response->p_intermediates->line, sizeof(charchar *));  
  190.             }  
  191.             at_response_free(p_response);  
  192.             break;  
  193.         case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:  
  194.             at_send_command("AT+COPS=0"NULL);  
  195.             break;  
  196.         case RIL_REQUEST_DATA_CALL_LIST:  
  197.             requestDataCallList(data, datalen, t);  
  198.             break;  
  199.         case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:  
  200.             requestQueryNetworkSelectionMode(data, datalen, t);  
  201.             break;  
  202.         case RIL_REQUEST_OEM_HOOK_RAW:  
  203.             // echo back data  
  204.             RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);  
  205.             break;  
  206.         case RIL_REQUEST_OEM_HOOK_STRINGS: {  
  207.             int i;  
  208.             const charchar ** cur;  
  209.             LOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);  
  210.             for (i = (datalen / sizeof (charchar *)), cur = (const charchar **)data ;  
  211.                     i > 0 ; cur++, i --) {  
  212.                 LOGD("> '%s'", *cur);  
  213.             }  
  214.             // echo back strings  
  215.             RIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);  
  216.             break;  
  217.         }  
  218.         case RIL_REQUEST_WRITE_SMS_TO_SIM:  
  219.             requestWriteSmsToSim(data, datalen, t);  
  220.             break;  
  221.         case RIL_REQUEST_DELETE_SMS_ON_SIM: {  
  222.             charchar * cmd;  
  223.             p_response = NULL;  
  224.             asprintf(&cmd, "AT+CMGD=%d", ((intint *)data)[0]);  
  225.             err = at_send_command(cmd, &p_response);  
  226.             free(cmd);  
  227.             if (err < 0 || p_response->success == 0) {  
  228.                 RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL0);  
  229.             } else {  
  230.                 RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL0);  
  231.             }  
  232.             at_response_free(p_response);  
  233.             break;  
  234.         }  
  235.         case RIL_REQUEST_ENTER_SIM_PIN:  
  236.         case RIL_REQUEST_ENTER_SIM_PUK:  
  237.         case RIL_REQUEST_ENTER_SIM_PIN2:  
  238.         case RIL_REQUEST_ENTER_SIM_PUK2:  
  239.         case RIL_REQUEST_CHANGE_SIM_PIN:  
  240.         case RIL_REQUEST_CHANGE_SIM_PIN2:  
  241.             requestEnterSimPin(data, datalen, t);  
  242.             break;  
  243.         case RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION:  
  244.             requestSmsBroadcastActivation(0,data, datalen, t);  
  245.             break;  
  246.         case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:  
  247.              LOGD("onRequest RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG");  
  248.             requestSetSmsBroadcastConfig(0,data, datalen, t);  
  249.             break;  
  250.         case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:  
  251.             requestGetSmsBroadcastConfig(0,data, datalen, t);  
  252.             break;  
  253.         default:  
  254.             RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL0);  
  255.             break;  
  256.     }  
  257. }  
static void onRequest (int request, void *data, size_t datalen, RIL_Token t)
{ATResponse *p_response;int err;LOGD("onRequest: %s", requestToString(request));/* Ignore all requests except RIL_REQUEST_GET_SIM_STATUS* when RADIO_STATE_UNAVAILABLE.*/if (sState == RADIO_STATE_UNAVAILABLE&& request != RIL_REQUEST_GET_SIM_STATUS) {RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);return;}/* Ignore all non-power requests when RADIO_STATE_OFF* (except RIL_REQUEST_GET_SIM_STATUS)*/if (sState == RADIO_STATE_OFF&& !(request == RIL_REQUEST_RADIO_POWER|| request == RIL_REQUEST_GET_SIM_STATUS)) {RIL_onRequestComplete(t, RIL_E_RADIO_NOT_AVAILABLE, NULL, 0);return;}switch (request) {case RIL_REQUEST_GET_SIM_STATUS: {RIL_CardStatus *p_card_status;char *p_buffer;int buffer_size;int result = getCardStatus(&p_card_status);if (result == RIL_E_SUCCESS) {p_buffer = (char *)p_card_status;buffer_size = sizeof(*p_card_status);} else {p_buffer = NULL;buffer_size = 0;}RIL_onRequestComplete(t, result, p_buffer, buffer_size);freeCardStatus(p_card_status);break;}case RIL_REQUEST_GET_CURRENT_CALLS:requestGetCurrentCalls(data, datalen, t);break;case RIL_REQUEST_DIAL:requestDial(data, datalen, t);break;case RIL_REQUEST_HANGUP:requestHangup(data, datalen, t);break;case RIL_REQUEST_HANGUP_WAITING_OR_BACKGROUND:// 3GPP 22.030 6.5.5// "Releases all held calls or sets User Determined User Busy//  (UDUB) for a waiting call."at_send_command("AT+CHLD=0", NULL);/* success or failure is ignored by the upper layer here.it will call GET_CURRENT_CALLS and determine success that way */RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;case RIL_REQUEST_HANGUP_FOREGROUND_RESUME_BACKGROUND:// 3GPP 22.030 6.5.5// "Releases all active calls (if any exist) and accepts//  the other (held or waiting) call."at_send_command("AT+CHLD=1", NULL);/* success or failure is ignored by the upper layer here.it will call GET_CURRENT_CALLS and determine success that way */RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;case RIL_REQUEST_SWITCH_WAITING_OR_HOLDING_AND_ACTIVE:// 3GPP 22.030 6.5.5// "Places all active calls (if any exist) on hold and accepts//  the other (held or waiting) call."at_send_command("AT+CHLD=2", NULL);#ifdef WORKAROUND_ERRONEOUS_ANSWERs_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER *//* success or failure is ignored by the upper layer here.it will call GET_CURRENT_CALLS and determine success that way */RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;case RIL_REQUEST_ANSWER:at_send_command("ATA", NULL);
#ifdef WORKAROUND_ERRONEOUS_ANSWERs_expectAnswer = 1;
#endif /* WORKAROUND_ERRONEOUS_ANSWER *//* success or failure is ignored by the upper layer here.it will call GET_CURRENT_CALLS and determine success that way */RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;case RIL_REQUEST_CONFERENCE:// 3GPP 22.030 6.5.5// "Adds a held call to the conversation"at_send_command("AT+CHLD=3", NULL);/* success or failure is ignored by the upper layer here.it will call GET_CURRENT_CALLS and determine success that way */RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;case RIL_REQUEST_UDUB:/* user determined user busy *//* sometimes used: ATH */at_send_command("ATH", NULL);/* success or failure is ignored by the upper layer here.it will call GET_CURRENT_CALLS and determine success that way */RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;case RIL_REQUEST_SEPARATE_CONNECTION:{char  cmd[12];int   party = ((int*)data)[0];// Make sure that party is in a valid range.// (Note: The Telephony middle layer imposes a range of 1 to 7.// It's sufficient for us to just make sure it's single digit.)if (party > 0 && party < 10) {sprintf(cmd, "AT+CHLD=2%d", party);at_send_command(cmd, NULL);RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);} else {RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);}}break;case RIL_REQUEST_SIGNAL_STRENGTH:requestSignalStrength(data, datalen, t);break;case RIL_REQUEST_REGISTRATION_STATE:case RIL_REQUEST_GPRS_REGISTRATION_STATE:requestRegistrationState(request, data, datalen, t);break;case RIL_REQUEST_OPERATOR:requestOperator(data, datalen, t);break;case RIL_REQUEST_RADIO_POWER:requestRadioPower(data, datalen, t);break;case RIL_REQUEST_DTMF: {char c = ((char *)data)[0];char *cmd;asprintf(&cmd, "AT+VTS=%c", (int)c);at_send_command(cmd, NULL);free(cmd);RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);break;}case RIL_REQUEST_SEND_SMS:requestSendSMS(data, datalen, t);break;case RIL_REQUEST_SETUP_DATA_CALL:requestSetupDataCall(data, datalen, t);break;case RIL_REQUEST_SMS_ACKNOWLEDGE:requestSMSAcknowledge(data, datalen, t);break;case RIL_REQUEST_GET_IMSI:p_response = NULL;err = at_send_command_numeric("AT+CIMI", &p_response);if (err < 0 || p_response->success == 0) {RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);} else {RIL_onRequestComplete(t, RIL_E_SUCCESS,p_response->p_intermediates->line, sizeof(char *));}at_response_free(p_response);break;case RIL_REQUEST_GET_IMEI:p_response = NULL;err = at_send_command_numeric("AT+CGSN", &p_response);if (err < 0 || p_response->success == 0) {RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);} else {RIL_onRequestComplete(t, RIL_E_SUCCESS,p_response->p_intermediates->line, sizeof(char *));}at_response_free(p_response);break;case RIL_REQUEST_SIM_IO:requestSIM_IO(data,datalen,t);break;case RIL_REQUEST_SEND_USSD:requestSendUSSD(data, datalen, t);break;case RIL_REQUEST_CANCEL_USSD:p_response = NULL;err = at_send_command_numeric("AT+CUSD=2", &p_response);if (err < 0 || p_response->success == 0) {RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);} else {RIL_onRequestComplete(t, RIL_E_SUCCESS,p_response->p_intermediates->line, sizeof(char *));}at_response_free(p_response);break;case RIL_REQUEST_SET_NETWORK_SELECTION_AUTOMATIC:at_send_command("AT+COPS=0", NULL);break;case RIL_REQUEST_DATA_CALL_LIST:requestDataCallList(data, datalen, t);break;case RIL_REQUEST_QUERY_NETWORK_SELECTION_MODE:requestQueryNetworkSelectionMode(data, datalen, t);break;case RIL_REQUEST_OEM_HOOK_RAW:// echo back dataRIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);break;case RIL_REQUEST_OEM_HOOK_STRINGS: {int i;const char ** cur;LOGD("got OEM_HOOK_STRINGS: 0x%8p %lu", data, (long)datalen);for (i = (datalen / sizeof (char *)), cur = (const char **)data ;i > 0 ; cur++, i --) {LOGD("> '%s'", *cur);}// echo back stringsRIL_onRequestComplete(t, RIL_E_SUCCESS, data, datalen);break;}case RIL_REQUEST_WRITE_SMS_TO_SIM:requestWriteSmsToSim(data, datalen, t);break;case RIL_REQUEST_DELETE_SMS_ON_SIM: {char * cmd;p_response = NULL;asprintf(&cmd, "AT+CMGD=%d", ((int *)data)[0]);err = at_send_command(cmd, &p_response);free(cmd);if (err < 0 || p_response->success == 0) {RIL_onRequestComplete(t, RIL_E_GENERIC_FAILURE, NULL, 0);} else {RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);}at_response_free(p_response);break;}case RIL_REQUEST_ENTER_SIM_PIN:case RIL_REQUEST_ENTER_SIM_PUK:case RIL_REQUEST_ENTER_SIM_PIN2:case RIL_REQUEST_ENTER_SIM_PUK2:case RIL_REQUEST_CHANGE_SIM_PIN:case RIL_REQUEST_CHANGE_SIM_PIN2:requestEnterSimPin(data, datalen, t);break;case RIL_REQUEST_GSM_SMS_BROADCAST_ACTIVATION:requestSmsBroadcastActivation(0,data, datalen, t);break;case RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG:LOGD("onRequest RIL_REQUEST_GSM_SET_BROADCAST_SMS_CONFIG");requestSetSmsBroadcastConfig(0,data, datalen, t);break;case RIL_REQUEST_GSM_GET_BROADCAST_SMS_CONFIG:requestGetSmsBroadcastConfig(0,data, datalen, t);break;default:RIL_onRequestComplete(t, RIL_E_REQUEST_NOT_SUPPORTED, NULL, 0);break;}
}
每一个RIL_REQUEST_XXX 请求转化成相应的 ATcommand ,发送给 modem ,然后睡眠等待,当收到 ATcommand 的最终响应后,线程被唤醒,将响应传给客户端进程。

2.currentState

[objc] view plain copy
print ?
  1. static RIL_RadioState currentState()  
  2. {  
  3.     return sState;  
  4. }  
static RIL_RadioState currentState()
{return sState;
}
3.onSupports
[objc] view plain copy
print ?
  1. static int onSupports (int requestCode)  
  2. {  
  3.     //@@@ todo  
  4.     return 1;  
  5. }  
static int onSupports (int requestCode)
{//@@@ todoreturn 1;
}
4.onCancel

[objc] view plain copy
print ?
  1. static void onCancel (RIL_Token t)  
  2. {  
  3.     //@@@todo  
  4. }  
static void onCancel (RIL_Token t)
{//@@@todo
}
5.getVersion
[objc] view plain copy
print ?
  1. static const charchar * getVersion(void)  
  2. {  
  3.     return "android reference-ril 1.0";  
  4. }  
static const char * getVersion(void)
{return "android reference-ril 1.0";
}
注册RIL_Env接口

由于各手机厂商的AT指令差异,因此与modem交互层需要各手机厂商实现,以动态库的形式提供。作为介于modem与上层的中间层,即要与底层交互也要与上层通信,因此就需要定义一个接口来衔接RILD与动态库,RIL_Env和RIL_RadioFunctions接口就是libril.so与librefrence.so通信的桥梁。Rild架构中用于隔离通用代码和厂商代码的接口,RIL_Env由通用代码实现,而RIL_RadioFunctions则是由厂商代码实现。


RIL_Init的主要任务:

1. 向librefrence.so注册libril.so提供的接口RIL_Env;

2. 创建一个mainLoop工作线程,用于初始化AT模块,并监控AT模块的状态,一旦AT被关闭,则重新打开并初始化AT

3. AT被打开后,mainLoop工作线程将向Rild提交一个定时事件,并触发eventLoop来完成对modem的初始化;

4. 创建一个readLoop工作线程,用于从AT串口中读取数据;

5.返回librefrence.so提供的接口RIL_RadioFunctions;

hardware\ril\reference-ril\reference-ril.c

[objc] view plain copy
print ?
  1. const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, charchar **argv)  
  2. {  
  3.     int ret;  
  4.     int fd = -1;  
  5.     int opt;  
  6.     pthread_attr_t attr;  
  7.   s_rilenv = env; //将ril.cpp中定义的RIL_Env注册到reference-ril.c中的s_rilenv  
  8.     while ( -1 != (opt = getopt(argc, argv, "p:d:s:"))) {  
  9.         switch (opt) {  
  10.             case 'p':  
  11.                 s_port = atoi(optarg);  
  12.                 if (s_port == 0) {  
  13.                     usage(argv[0]);  
  14.                     return NULL;  
  15.                 }  
  16.                 LOGI("Opening loopback port %d\n", s_port);  
  17.             break;  
  18.             case 'd':  
  19.                 s_device_path = optarg;  
  20.                 LOGI("Opening tty device %s\n", s_device_path);  
  21.             break;  
  22.             case 's':  
  23.                 s_device_path   = optarg;  
  24.                 s_device_socket = 1;  
  25.                 LOGI("Opening socket %s\n", s_device_path);  
  26.             break;  
  27.             default:  
  28.                 usage(argv[0]);  
  29.                 return NULL;  
  30.         }  
  31.     }  
  32.     if (s_port < 0 && s_device_path == NULL) {  
  33.         usage(argv[0]);  
  34.         return NULL;  
  35.     }  
  36.     pthread_attr_init (&attr);  
  37.   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  
  38.   //创建一个mainLoop线程  
  39.   ret = pthread_create(&s_tid_mainloop, &attr, mainLoop, NULL);  
  40.   //将reference-ril.c中定义的RIL_RadioFunctions返回并注册到ril.cpp中的s_callbacks  
  41.     return &s_callbacks;  
  42. }  
const RIL_RadioFunctions *RIL_Init(const struct RIL_Env *env, int argc, char **argv)
{int ret;int fd = -1;int opt;pthread_attr_t attr;s_rilenv = env; //将ril.cpp中定义的RIL_Env注册到reference-ril.c中的s_rilenvwhile ( -1 != (opt = getopt(argc, argv, "p:d:s:"))) {switch (opt) {case 'p':s_port = atoi(optarg);if (s_port == 0) {usage(argv[0]);return NULL;}LOGI("Opening loopback port %d\n", s_port);break;case 'd':s_device_path = optarg;LOGI("Opening tty device %s\n", s_device_path);break;case 's':s_device_path   = optarg;s_device_socket = 1;LOGI("Opening socket %s\n", s_device_path);break;default:usage(argv[0]);return NULL;}}if (s_port < 0 && s_device_path == NULL) {usage(argv[0]);return NULL;}pthread_attr_init (&attr);pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);//创建一个mainLoop线程ret = pthread_create(&s_tid_mainloop, &attr, mainLoop, NULL);//将reference-ril.c中定义的RIL_RadioFunctions返回并注册到ril.cpp中的s_callbacksreturn &s_callbacks;
}
mainLoop 工作线程是用来初始化并监控 AT 模块的,一旦 AT 模块被关闭,就自动打开。
[objc] view plain copy
print ?
  1. static voidvoid * mainLoop(voidvoid *param)  
  2. {  
  3.     int fd;  
  4.     int ret;  
  5.   AT_DUMP("== ""entering mainLoop()", -1 );  
  6.   //为AT模块设置回调函数  
  7.     at_set_on_reader_closed(onATReaderClosed);  
  8.     at_set_on_timeout(onATTimeout);  
  9.     for (;;) {  
  10.         fd = -1;  
  11.         while  (fd < 0) { //获得串口AT模块的设备文件描述符  
  12.             if (s_port > 0) {  
  13.                 fd = socket_loopback_client(s_port, SOCK_STREAM);  
  14.             } else if (s_device_socket) {  
  15.                 if (!strcmp(s_device_path, "/dev/socket/qemud")) {  
  16.                     /* Qemu-specific control socket */  
  17.                     fd = socket_local_client( "qemud",  
  18.                  ANDROID_SOCKET_NAMESPACE_RESERVED,SOCK_STREAM );  
  19.                     if (fd >= 0 ) {  
  20.                         char  answer[2];  
  21.                         if ( write(fd, "gsm"3) != 3 ||read(fd, answer, 2) != 2 ||  
  22.                              memcmp(answer, "OK"2) != 0)  
  23.                         {  
  24.                             close(fd);  
  25.                             fd = -1;  
  26.                         }  
  27.                    }  
  28.                 }  
  29.                 else  
  30.                     fd = socket_local_client( s_device_path,    ANDROID_SOCKET_NAMESPACE_FILESYSTEM,SOCK_STREAM );  
  31.             } else if (s_device_path != NULL) {  
  32.                 fd = open (s_device_path, O_RDWR);  
  33.                 if ( fd >= 0 && !memcmp( s_device_path, "/dev/ttyS"9 ) ) {  
  34.                     /* disable echo on serial ports */  
  35.                     struct termios  ios;  
  36.                     tcgetattr( fd, &ios );  
  37.                     ios.c_lflag = 0;  /* disable ECHO, ICANON, etc... */  
  38.                     tcsetattr( fd, TCSANOW, &ios );  
  39.                 }  
  40.             }  
  41.             if (fd < 0) {  
  42.                 perror ("opening AT interface. retrying...");  
  43.                 sleep(10);  
  44.             }  
  45.         }  
  46.         s_closed = 0;  
  47.         //打开AT模块,创建AT读取线程s_tid_reader,fd为modem设备文件句柄  
  48.         ret = at_open(fd, onUnsolicited);  
  49.         if (ret < 0) {  
  50.             LOGE ("AT error %d on at_open\n", ret);  
  51.             return 0;  
  52.         }  
  53.         //向Rild提交超时任务  
  54.         RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);  
  55.         sleep(1);  
  56.         //如果AT模块被关闭,则waitForClose返回,重新打开AT,如果AT已打开,则阻塞  
  57.         waitForClose();  
  58.         LOGI("Re-opening after close");  
  59.     }  
  60. }  
static void * mainLoop(void *param)
{int fd;int ret;AT_DUMP("== ", "entering mainLoop()", -1 );//为AT模块设置回调函数at_set_on_reader_closed(onATReaderClosed);at_set_on_timeout(onATTimeout);for (;;) {fd = -1;while  (fd < 0) { //获得串口AT模块的设备文件描述符if (s_port > 0) {fd = socket_loopback_client(s_port, SOCK_STREAM);} else if (s_device_socket) {if (!strcmp(s_device_path, "/dev/socket/qemud")) {/* Qemu-specific control socket */fd = socket_local_client( "qemud",ANDROID_SOCKET_NAMESPACE_RESERVED,SOCK_STREAM );if (fd >= 0 ) {char  answer[2];if ( write(fd, "gsm", 3) != 3 ||read(fd, answer, 2) != 2 ||memcmp(answer, "OK", 2) != 0){close(fd);fd = -1;}}}elsefd = socket_local_client( s_device_path,    ANDROID_SOCKET_NAMESPACE_FILESYSTEM,SOCK_STREAM );} else if (s_device_path != NULL) {fd = open (s_device_path, O_RDWR);if ( fd >= 0 && !memcmp( s_device_path, "/dev/ttyS", 9 ) ) {/* disable echo on serial ports */struct termios  ios;tcgetattr( fd, &ios );ios.c_lflag = 0;  /* disable ECHO, ICANON, etc... */tcsetattr( fd, TCSANOW, &ios );}}if (fd < 0) {perror ("opening AT interface. retrying...");sleep(10);}}s_closed = 0;//打开AT模块,创建AT读取线程s_tid_reader,fd为modem设备文件句柄ret = at_open(fd, onUnsolicited);if (ret < 0) {LOGE ("AT error %d on at_open\n", ret);return 0;}//向Rild提交超时任务RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);sleep(1);//如果AT模块被关闭,则waitForClose返回,重新打开AT,如果AT已打开,则阻塞waitForClose();LOGI("Re-opening after close");}
}
1.打开AT模块

通过at_open打开文件描述符为fdAT串口设备,并注册回调函数ATUnsolHandler

[objc] view plain copy
print ?
  1. int at_open(int fd, ATUnsolHandler h)  
  2. {  
  3.     int ret;  
  4.     pthread_t tid;  
  5.     pthread_attr_t attr;  
  6.     s_fd = fd;  
  7.     s_unsolHandler = h;  
  8.     s_readerClosed = 0;  
  9.     s_responsePrefix = NULL;  
  10.     s_smsPDU = NULL;  
  11.     sp_response = NULL;  
  12.     /* Android power control ioctl */  
  13. #ifdef HAVE_ANDROID_OS  
  14. #ifdef OMAP_CSMI_POWER_CONTROL  
  15.     ret = ioctl(fd, OMAP_CSMI_TTY_ENABLE_ACK);  
  16.     if(ret == 0) {  
  17.         int ack_count;  
  18.         int read_count;  
  19.         int old_flags;  
  20.         char sync_buf[256];  
  21.         old_flags = fcntl(fd, F_GETFL, 0);  
  22.         fcntl(fd, F_SETFL, old_flags | O_NONBLOCK);  
  23.         do {  
  24.             ioctl(fd, OMAP_CSMI_TTY_READ_UNACKED, &ack_count);  
  25.             read_count = 0;  
  26.             do {  
  27.                 ret = read(fd, sync_buf, sizeof(sync_buf));  
  28.                 if(ret > 0)  
  29.                     read_count += ret;  
  30.             } while(ret > 0 || (ret < 0 && errno == EINTR));  
  31.             ioctl(fd, OMAP_CSMI_TTY_ACK, &ack_count);  
  32.          } while(ack_count > 0 || read_count > 0);  
  33.         fcntl(fd, F_SETFL, old_flags);  
  34.         s_readCount = 0;  
  35.         s_ackPowerIoctl = 1;  
  36.     }  
  37.     else  
  38.         s_ackPowerIoctl = 0;  
  39. #else // OMAP_CSMI_POWER_CONTROL  
  40.         s_ackPowerIoctl = 0;  
  41. #endif // OMAP_CSMI_POWER_CONTROL  
  42. #endif /*HAVE_ANDROID_OS*/  
  43.     pthread_attr_init (&attr);  
  44.   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);  
  45.   //创建readerLoop工作线程,该线程用于从串口读取数据  
  46.     ret = pthread_create(&s_tid_reader, &attr, readerLoop, &attr);  
  47.     if (ret < 0) {  
  48.         perror ("pthread_create");  
  49.         return -1;  
  50.     }  
  51.     return 0;  
  52. }  
int at_open(int fd, ATUnsolHandler h)
{int ret;pthread_t tid;pthread_attr_t attr;s_fd = fd;s_unsolHandler = h;s_readerClosed = 0;s_responsePrefix = NULL;s_smsPDU = NULL;sp_response = NULL;/* Android power control ioctl */
#ifdef HAVE_ANDROID_OS
#ifdef OMAP_CSMI_POWER_CONTROLret = ioctl(fd, OMAP_CSMI_TTY_ENABLE_ACK);if(ret == 0) {int ack_count;int read_count;int old_flags;char sync_buf[256];old_flags = fcntl(fd, F_GETFL, 0);fcntl(fd, F_SETFL, old_flags | O_NONBLOCK);do {ioctl(fd, OMAP_CSMI_TTY_READ_UNACKED, &ack_count);read_count = 0;do {ret = read(fd, sync_buf, sizeof(sync_buf));if(ret > 0)read_count += ret;} while(ret > 0 || (ret < 0 && errno == EINTR));ioctl(fd, OMAP_CSMI_TTY_ACK, &ack_count);} while(ack_count > 0 || read_count > 0);fcntl(fd, F_SETFL, old_flags);s_readCount = 0;s_ackPowerIoctl = 1;}elses_ackPowerIoctl = 0;
#else // OMAP_CSMI_POWER_CONTROLs_ackPowerIoctl = 0;
#endif // OMAP_CSMI_POWER_CONTROL
#endif /*HAVE_ANDROID_OS*/pthread_attr_init (&attr);pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);//创建readerLoop工作线程,该线程用于从串口读取数据ret = pthread_create(&s_tid_reader, &attr, readerLoop, &attr);if (ret < 0) {perror ("pthread_create");return -1;}return 0;
}
2. 添加定时事件RIL_requestTimedCallback

[objc] view plain copy
print ?
  1. RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);  
  2.   
  3. #define RIL_requestTimedCallback(a,b,c) s_rilenv->RequestTimedCallback(a,b,c)  
RIL_requestTimedCallback(initializeCallback, NULL, &TIMEVAL_0);#define RIL_requestTimedCallback(a,b,c) s_rilenv->RequestTimedCallback(a,b,c)
向定时事件队列中添加一个定时事件,该事件的处理函数为initializeCallback,用于发送一些AT 指令来初始化 BP modem

3.readLoop工作线程

Read loop 解析从Modem 发过来的回应。如果遇到URC 则通过handleUnsolicited 上报的RIL_JAVA。如果是命令的应答,则通过handleFinalResponse 通知send_at_command 有应答结果。



注册RIL_RadioFunctions接口

hardware\ril\libril\ril.cpp

[cpp] view plain copy
print ?
  1. extern "C" void RIL_register (const RIL_RadioFunctions *callbacks) {  
  2.     int ret;  
  3.   int flags;  
  4.   //版本验证  
  5.     if (callbacks == NULL || ((callbacks->version != RIL_VERSION)&& (callbacks->version < 2))) {   
  6.         return;  
  7.     }  
  8.     if (callbacks->version < RIL_VERSION) {  
  9.         LOGE ("RIL_register: upgrade RIL to version %d current version=%d",  
  10.               RIL_VERSION, callbacks->version);  
  11.     }  
  12.     if (s_registerCalled > 0) {  
  13.         LOGE("RIL_register has been called more than once. "Subsequent call ignored");  
  14.         return;  
  15.   }  
  16.     //将reference-ril.c中定义的RIL_RadioFunctions注册到ril.cpp中  
  17.     memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));  
  18.     s_registerCalled = 1;  
  19.     for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {  
  20.         assert(i == s_commands[i].requestNumber); //序号验证  
  21.     }  
  22.     for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {  
  23.         assert(i + RIL_UNSOL_RESPONSE_BASE== s_unsolResponses[i].requestNumber);  
  24.     }  
  25.     // old standalone impl wants it here.  
  26.     if (s_started == 0) {  
  27.         RIL_startEventLoop();  
  28.     }  
  29.   // 得到名为rild的socket句柄  
  30.   s_fdListen = android_get_control_socket(SOCKET_NAME_RIL);  
  31.     if (s_fdListen < 0) {  
  32.         LOGE("Failed to get socket '" SOCKET_NAME_RIL "'");  
  33.         exit(-1);  
  34.   }  
  35.   // 监听该socket  
  36.     ret = listen(s_fdListen, 4);  
  37.     if (ret < 0) {  
  38.         LOGE("Failed to listen on control socket '%d': %s",s_fdListen, strerror(errno));  
  39.         exit(-1);  
  40.     }  
  41.     /* 设置s_listen_event事件,一旦有客户端连接,即s_fdListen可读就会导致eventLoop工作线程中的select返回,因为该事件不是持久的,因此调用为listenCallback处理完后,将从watch_table移除该事件,所以Rild只支持一个客户端连接*/  
  42.   ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL);  
  43.     /* 添加s_listen_event事件,并触发eventLoop工作线程 */  
  44.     rilEventAddWakeup (&s_listen_event);  
  45. #if 1  
  46.     // 得到调试socket的句柄rild-debug  
  47.     s_fdDebug = android_get_control_socket(SOCKET_NAME_RIL_DEBUG);  
  48.     if (s_fdDebug < 0) {  
  49.         LOGE("Failed to get socket '" SOCKET_NAME_RIL_DEBUG "' errno:%d", errno);  
  50.         exit(-1);  
  51.   }  
  52.   //监听该socket  
  53.     ret = listen(s_fdDebug, 4);  
  54.     if (ret < 0) {  
  55.         LOGE("Failed to listen on ril debug socket '%d': %s",s_fdDebug, strerror(errno));  
  56.         exit(-1);  
  57.   }  
  58.     /* 设置s_debug_event事件 */  
  59.     ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL);  
  60.     /* 添加s_debug_event事件,并触发eventLoop工作线程  */  
  61.     rilEventAddWakeup (&s_debug_event);  
  62. #endif  
  63. }  
extern "C" void RIL_register (const RIL_RadioFunctions *callbacks) {int ret;int flags;//版本验证if (callbacks == NULL || ((callbacks->version != RIL_VERSION)&& (callbacks->version < 2))) { return;}if (callbacks->version < RIL_VERSION) {LOGE ("RIL_register: upgrade RIL to version %d current version=%d",RIL_VERSION, callbacks->version);}if (s_registerCalled > 0) {LOGE("RIL_register has been called more than once. "Subsequent call ignored");return;}//将reference-ril.c中定义的RIL_RadioFunctions注册到ril.cpp中memcpy(&s_callbacks, callbacks, sizeof (RIL_RadioFunctions));s_registerCalled = 1;for (int i = 0; i < (int)NUM_ELEMS(s_commands); i++) {assert(i == s_commands[i].requestNumber); //序号验证}for (int i = 0; i < (int)NUM_ELEMS(s_unsolResponses); i++) {assert(i + RIL_UNSOL_RESPONSE_BASE== s_unsolResponses[i].requestNumber);}// old standalone impl wants it here.if (s_started == 0) {RIL_startEventLoop();}// 得到名为rild的socket句柄s_fdListen = android_get_control_socket(SOCKET_NAME_RIL);if (s_fdListen < 0) {LOGE("Failed to get socket '" SOCKET_NAME_RIL "'");exit(-1);}// 监听该socketret = listen(s_fdListen, 4);if (ret < 0) {LOGE("Failed to listen on control socket '%d': %s",s_fdListen, strerror(errno));exit(-1);}/* 设置s_listen_event事件,一旦有客户端连接,即s_fdListen可读就会导致eventLoop工作线程中的select返回,因为该事件不是持久的,因此调用为listenCallback处理完后,将从watch_table移除该事件,所以Rild只支持一个客户端连接*/ril_event_set (&s_listen_event, s_fdListen, false,listenCallback, NULL);/* 添加s_listen_event事件,并触发eventLoop工作线程 */rilEventAddWakeup (&s_listen_event);
#if 1// 得到调试socket的句柄rild-debugs_fdDebug = android_get_control_socket(SOCKET_NAME_RIL_DEBUG);if (s_fdDebug < 0) {LOGE("Failed to get socket '" SOCKET_NAME_RIL_DEBUG "' errno:%d", errno);exit(-1);}//监听该socketret = listen(s_fdDebug, 4);if (ret < 0) {LOGE("Failed to listen on ril debug socket '%d': %s",s_fdDebug, strerror(errno));exit(-1);}/* 设置s_debug_event事件 */ril_event_set (&s_debug_event, s_fdDebug, true,debugCallback, NULL);/* 添加s_debug_event事件,并触发eventLoop工作线程  */rilEventAddWakeup (&s_debug_event);
#endif
}
打开监听端口,接收来自客户端进程的命令请求,当与客户进程连接建立时调用listenCallback 函数,创建单独线程监视并处理所有事件源。

1.客户端连接处理

s_listen_event事件用于处理上层客户端的socket连接,当得到socket连接请求时,eventLoop工作线程里的select返回并自动调用listenCallback回调函数进行处理:

[cpp] view plain copy
print ?
  1. tatic void listenCallback (int fd, short flags, void *param) {  
  2.     int ret;  
  3.     int err;  
  4.     int is_phone_socket;  
  5.     RecordStream *p_rs;  
  6.     commthread_data_t *user_data = NULL;  
  7.     user_data =(commthread_data_t *)malloc(sizeof(commthread_data_t));  
  8.     struct sockaddr_un peeraddr;  
  9.     socklen_t socklen = sizeof (peeraddr);  
  10.     struct ucred creds;  
  11.     socklen_t szCreds = sizeof(creds);  
  12.     struct passwd *pwd = NULL;  
  13.     assert (s_fdCommand < 0);  
  14.   assert (fd == s_fdListen);  
  15.   //接收一个客户端的连接,并将该socket连接保存在变量s_fdCommand中  
  16.     s_fdCommand = accept(s_fdListen, (sockaddr *) &peeraddr, &socklen);  
  17.     if (s_fdCommand < 0 ) {  
  18.         LOGE("Error on accept() errno:%d", errno);  
  19.         /* start listening for new connections again */  
  20.         rilEventAddWakeup(&s_listen_event);  
  21.           return;  
  22.     }  
  23.     /* 对客户端权限判断,判断是否是进程组ID为radio的进程发起的连接*/  
  24.     errno = 0;  
  25.     is_phone_socket = 0;  
  26.     err = getsockopt(s_fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);  
  27.     if (err == 0 && szCreds > 0) {  
  28.         errno = 0;  
  29.         pwd = getpwuid(creds.uid);  
  30.         if (pwd != NULL) {  
  31.             if (strcmp(pwd->pw_name, PHONE_PROCESS) == 0) {  
  32.                 is_phone_socket = 1;  
  33.             } else {  
  34.                 LOGE("RILD can't accept socket from process %s", pwd->pw_name);  
  35.             }  
  36.         } else {  
  37.             LOGE("Error on getpwuid() errno: %d", errno);  
  38.         }  
  39.     } else {  
  40.         LOGD("Error on getsockopt() errno: %d", errno);  
  41.     }  
  42.       
  43.     if ( !is_phone_socket ) {  
  44.       LOGE("RILD must accept socket from %s", PHONE_PROCESS);  
  45.       close(s_fdCommand);  
  46.       s_fdCommand = -1;  
  47.       onCommandsSocketClosed();  
  48.       /* start listening for new connections again */  
  49.       rilEventAddWakeup(&s_listen_event);  
  50.       return;  
  51.     }  
  52. #if 0  
  53.     if(s_dualSimMode) {  
  54.         if(s_sim_num == 0) {  
  55.             property_get(SIM_POWER_PROPERTY, prop, "0");  
  56.             if(!strcmp(prop, "0")) {  
  57.                 property_set(SIM_POWER_PROPERTY, "1");  
  58.                 s_callbacks.powerSIM(NULL);  
  59.             }  
  60.         } else if(s_sim_num == 1) {  
  61.             property_get(SIM_POWER_PROPERTY1, prop, "0");  
  62.             if(!strcmp(prop, "0")) {  
  63.                 property_set(SIM_POWER_PROPERTY1, "1");  
  64.                 s_callbacks.powerSIM(NULL);  
  65.             }  
  66.         }  
  67.     } else {  
  68.         property_get(SIM_POWER_PROPERTY, prop, "0");  
  69.         if(!strcmp(prop, "0")) {  
  70.             property_set(SIM_POWER_PROPERTY, "1");  
  71.             s_callbacks.powerSIM(NULL);  
  72.         }  
  73.     }  
  74. #endif  
  75.     //p_rs为RecordStream类型,它内部会分配一个缓冲区来存储客户端发送过来的数据  
  76.   p_rs = record_stream_new(s_fdCommand, MAX_COMMAND_BYTES);  
  77.   //添加一个针对接收到的客户端连接的处理事件,从而在eventLoop工作线程中处理该客户端的各种请求  
  78.     ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs);  
  79.     rilEventAddWakeup (&s_commands_event);  
  80.     onNewCommandConnect();  
  81. }  
tatic void listenCallback (int fd, short flags, void *param) {int ret;int err;int is_phone_socket;RecordStream *p_rs;commthread_data_t *user_data = NULL;user_data =(commthread_data_t *)malloc(sizeof(commthread_data_t));struct sockaddr_un peeraddr;socklen_t socklen = sizeof (peeraddr);struct ucred creds;socklen_t szCreds = sizeof(creds);struct passwd *pwd = NULL;assert (s_fdCommand < 0);assert (fd == s_fdListen);//接收一个客户端的连接,并将该socket连接保存在变量s_fdCommand中s_fdCommand = accept(s_fdListen, (sockaddr *) &peeraddr, &socklen);if (s_fdCommand < 0 ) {LOGE("Error on accept() errno:%d", errno);/* start listening for new connections again */rilEventAddWakeup(&s_listen_event);return;}/* 对客户端权限判断,判断是否是进程组ID为radio的进程发起的连接*/errno = 0;is_phone_socket = 0;err = getsockopt(s_fdCommand, SOL_SOCKET, SO_PEERCRED, &creds, &szCreds);if (err == 0 && szCreds > 0) {errno = 0;pwd = getpwuid(creds.uid);if (pwd != NULL) {if (strcmp(pwd->pw_name, PHONE_PROCESS) == 0) {is_phone_socket = 1;} else {LOGE("RILD can't accept socket from process %s", pwd->pw_name);}} else {LOGE("Error on getpwuid() errno: %d", errno);}} else {LOGD("Error on getsockopt() errno: %d", errno);}if ( !is_phone_socket ) {LOGE("RILD must accept socket from %s", PHONE_PROCESS);close(s_fdCommand);s_fdCommand = -1;onCommandsSocketClosed();/* start listening for new connections again */rilEventAddWakeup(&s_listen_event);return;}
#if 0if(s_dualSimMode) {if(s_sim_num == 0) {property_get(SIM_POWER_PROPERTY, prop, "0");if(!strcmp(prop, "0")) {property_set(SIM_POWER_PROPERTY, "1");s_callbacks.powerSIM(NULL);}} else if(s_sim_num == 1) {property_get(SIM_POWER_PROPERTY1, prop, "0");if(!strcmp(prop, "0")) {property_set(SIM_POWER_PROPERTY1, "1");s_callbacks.powerSIM(NULL);}}} else {property_get(SIM_POWER_PROPERTY, prop, "0");if(!strcmp(prop, "0")) {property_set(SIM_POWER_PROPERTY, "1");s_callbacks.powerSIM(NULL);}}
#endif//p_rs为RecordStream类型,它内部会分配一个缓冲区来存储客户端发送过来的数据p_rs = record_stream_new(s_fdCommand, MAX_COMMAND_BYTES);//添加一个针对接收到的客户端连接的处理事件,从而在eventLoop工作线程中处理该客户端的各种请求ril_event_set (&s_commands_event, s_fdCommand, 1,processCommandsCallback, p_rs);rilEventAddWakeup (&s_commands_event);onNewCommandConnect();
}
2.客户端通信处理

在listenCallback中首先接收客户端的连接请求,并验证客户端的权限,同时将该客户端以事件的形式添加到eventLoop工作线程中进行监控,当该客户端有数据请求时,eventLoop工作线程从select中返回,并自动调用processCommandsCallback回调函数:

[cpp] view plain copy
print ?
  1. static void processCommandsCallback(int fd, short flags, void *param) {  
  2.     RecordStream *p_rs;  
  3.     void *p_record;  
  4.     size_t recordlen;  
  5.     int ret;  
  6.     assert(fd == s_fdCommand);  
  7.     p_rs = (RecordStream *)param;  
  8.   for (;;) { //循环处理客户端发送过来的AT命令  
  9.       //读取一条AT命令  
  10.         ret = record_stream_get_next(p_rs, &p_record, &recordlen);  
  11.         if (ret == 0 && p_record == NULL) {  
  12.             break;  
  13.         } else if (ret < 0) {  
  14.             break;  
  15.         } else if (ret == 0) { /* && p_record != NULL */  
  16.             //处理客户端发送过来的AT命令  
  17.             processCommandBuffer(p_record, recordlen);  
  18.         }  
  19.     }  
  20.     if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {  
  21.         if (ret != 0) {  
  22.             LOGE("error on reading command socket errno:%d\n", errno);  
  23.         } else {  
  24.             LOGW("EOS.  Closing command socket.");  
  25.         }  
  26.         close(s_fdCommand);  
  27.         s_fdCommand = -1;  
  28.         ril_event_del(&s_commands_event);  
  29.         record_stream_free(p_rs);  
  30.         rilEventAddWakeup(&s_listen_event);  
  31.         onCommandsSocketClosed();  
  32.     }  
  33. }  
static void processCommandsCallback(int fd, short flags, void *param) {RecordStream *p_rs;void *p_record;size_t recordlen;int ret;assert(fd == s_fdCommand);p_rs = (RecordStream *)param;for (;;) { //循环处理客户端发送过来的AT命令//读取一条AT命令ret = record_stream_get_next(p_rs, &p_record, &recordlen);if (ret == 0 && p_record == NULL) {break;} else if (ret < 0) {break;} else if (ret == 0) { /* && p_record != NULL *///处理客户端发送过来的AT命令processCommandBuffer(p_record, recordlen);}}if (ret == 0 || !(errno == EAGAIN || errno == EINTR)) {if (ret != 0) {LOGE("error on reading command socket errno:%d\n", errno);} else {LOGW("EOS.  Closing command socket.");}close(s_fdCommand);s_fdCommand = -1;ril_event_del(&s_commands_event);record_stream_free(p_rs);rilEventAddWakeup(&s_listen_event);onCommandsSocketClosed();}
}
通过processCommandBuffer函数来处理每一条AT 命令:
[cpp] view plain copy
print ?
  1. static int processCommandBuffer(void *buffer, size_t buflen) {  
  2.     Parcel p;  
  3.     status_t status;  
  4.     int32_t request;  
  5.     int32_t token;  
  6.     RequestInfo *pRI;  
  7.     int ret;  
  8.     p.setData((uint8_t *) buffer, buflen);  
  9.     // status checked at end  
  10.     status = p.readInt32(&request);  
  11.     status = p.readInt32 (&token);  
  12.     if (status != NO_ERROR) {  
  13.         LOGE("invalid request block");  
  14.         return 0;  
  15.     }  
  16.     if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {  
  17.         LOGE("unsupported request code %d token %d", request, token);  
  18.         return 0;  
  19.     }  
  20.     pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));  
  21.     pRI->token = token; //AT命令标号  
  22.     pRI->pCI = &(s_commands[request]); //根据request找到s_commands命令数组中的指定AT命令  
  23.     ret = pthread_mutex_lock(&s_pendingRequestsMutex);  
  24.     assert (ret == 0);  
  25.     pRI->p_next = s_pendingRequests;  
  26.     s_pendingRequests = pRI;  
  27.     ret = pthread_mutex_unlock(&s_pendingRequestsMutex);  
  28.   assert (ret == 0);  
  29.   //调用指定AT命令的dispatch函数,根据接收来自客户进程的命令和参数,调用onRequest进行处理。  
  30.     pRI->pCI->dispatchFunction(p, pRI);  
  31.     return 0;  
  32. }  
static int processCommandBuffer(void *buffer, size_t buflen) {Parcel p;status_t status;int32_t request;int32_t token;RequestInfo *pRI;int ret;p.setData((uint8_t *) buffer, buflen);// status checked at endstatus = p.readInt32(&request);status = p.readInt32 (&token);if (status != NO_ERROR) {LOGE("invalid request block");return 0;}if (request < 1 || request >= (int32_t)NUM_ELEMS(s_commands)) {LOGE("unsupported request code %d token %d", request, token);return 0;}pRI = (RequestInfo *)calloc(1, sizeof(RequestInfo));pRI->token = token; //AT命令标号pRI->pCI = &(s_commands[request]); //根据request找到s_commands命令数组中的指定AT命令ret = pthread_mutex_lock(&s_pendingRequestsMutex);assert (ret == 0);pRI->p_next = s_pendingRequests;s_pendingRequests = pRI;ret = pthread_mutex_unlock(&s_pendingRequestsMutex);assert (ret == 0);//调用指定AT命令的dispatch函数,根据接收来自客户进程的命令和参数,调用onRequest进行处理。pRI->pCI->dispatchFunction(p, pRI);return 0;
}
打电话的AT 命令:{ RIL_REQUEST_DIALdispatchDialresponseVoid},

发短信的AT命令:{RIL_REQUEST_SEND_SMSdispatchStrings, responseSMS},

3.电话拨打流程



[cpp] view plain copy
print ?
  1. static void dispatchDial (Parcel &p, RequestInfo *pRI) {  
  2.   RIL_Dial dial; //RIL_Dial存储了打电话的所有信息  
  3.     RIL_UUS_Info uusInfo;   
  4.     int32_t sizeOfDial;  
  5.     int32_t t;  
  6.     .................. //初始化dial变量    
  7.   s_callbacks.onRequest(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI);  
  8.   .................  
  9.     return;  
  10. }  
static void dispatchDial (Parcel &p, RequestInfo *pRI) {RIL_Dial dial; //RIL_Dial存储了打电话的所有信息RIL_UUS_Info uusInfo; int32_t sizeOfDial;int32_t t;.................. //初始化dial变量  s_callbacks.onRequest(pRI->pCI->requestNumber, &dial, sizeOfDial, pRI);.................return;
}
s_callbacks.onRequest 其实就是调用 RIL_RadioFunctions中的 onRequest 函数,该函数在前面已介绍过了。

[cpp] view plain copy
print ?
  1. static void onRequest (int request, void *data, size_t datalen, RIL_Token t)  
  2. {  
  3.     switch (request) {  
  4.         case RIL_REQUEST_DIAL:  
  5.             requestDial(data, datalen, t);  
  6.             break;  
  7.     }  
  8. }  
static void onRequest (int request, void *data, size_t datalen, RIL_Token t)
{switch (request) {case RIL_REQUEST_DIAL:requestDial(data, datalen, t);break;}
}

[cpp] view plain copy
print ?
  1. static void requestDial(void *data, size_t datalen, RIL_Token t)  
  2. {  
  3.     RIL_Dial *p_dial;  
  4.     char *cmd;  
  5.     const char *clir;  
  6.     int ret;  
  7.     p_dial = (RIL_Dial *)data;  
  8.     switch (p_dial->clir) {  
  9.         case 1: clir = "I"break;  /*invocation*/  
  10.         case 2: clir = "i"break;  /*suppression*/  
  11.         default:  
  12.         case 0: clir = ""break;   /*subscription default*/  
  13.   }  
  14.   //向串口发送AT指令  
  15.     ret = at_send_command(cmd, NULL);  
  16.   free(cmd);  
  17.   //通知请求结果  
  18.     RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);  
  19. }  
static void requestDial(void *data, size_t datalen, RIL_Token t)
{RIL_Dial *p_dial;char *cmd;const char *clir;int ret;p_dial = (RIL_Dial *)data;switch (p_dial->clir) {case 1: clir = "I"; break;  /*invocation*/case 2: clir = "i"; break;  /*suppression*/default:case 0: clir = ""; break;   /*subscription default*/}//向串口发送AT指令ret = at_send_command(cmd, NULL);free(cmd);//通知请求结果RIL_onRequestComplete(t, RIL_E_SUCCESS, NULL, 0);
}
AT 发送完拨号指令后,通过RIL_onRequestComplete返回处理结果,RIL_onRequestComplete实际上是RIL_Env中的 OnRequestComplete函数,在前面我们也介绍过了
[cpp] view plain copy
print ?
  1. extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {  
  2.     RequestInfo *pRI;  
  3.     int ret;  
  4.     size_t errorOffset;  
  5.   pRI = (RequestInfo *)t;  
  6.   //该请求已经处理,需要从请求队列中移除该请求  
  7.     if (!checkAndDequeueRequestInfo(pRI)) {  
  8.         LOGE ("RIL_onRequestComplete: invalid RIL_Token");  
  9.         return;  
  10.     }  
  11.     if (pRI->local > 0) {  
  12.         ...........  
  13.         sendResponse(p);  
  14.     }  
  15. done:  
  16.     free(pRI);  
  17. }  
extern "C" void RIL_onRequestComplete(RIL_Token t, RIL_Errno e, void *response, size_t responselen) {RequestInfo *pRI;int ret;size_t errorOffset;pRI = (RequestInfo *)t;//该请求已经处理,需要从请求队列中移除该请求if (!checkAndDequeueRequestInfo(pRI)) {LOGE ("RIL_onRequestComplete: invalid RIL_Token");return;}if (pRI->local > 0) {...........sendResponse(p);}
done:free(pRI);
}
[cpp] view plain copy
print ?
  1. static int sendResponse (Parcel &p) {  
  2.     return sendResponseRaw(p.data(), p.dataSize()); //将结果发送给JAVA RIL客户端  
  3. }  
static int sendResponse (Parcel &p) {return sendResponseRaw(p.data(), p.dataSize()); //将结果发送给JAVA RIL客户端
}
[cpp] view plain copy
print ?
  1. static int sendResponseRaw (const void *data, size_t dataSize) {  
  2.     int fd = s_fdCommand;  
  3.     int ret;  
  4.     uint32_t header;  
  5.     if (s_fdCommand < 0) {  
  6.         return -1;  
  7.     }  
  8.     if (dataSize > MAX_COMMAND_BYTES) {  
  9.         return -1;  
  10.     }  
  11.     pthread_mutex_lock(&s_writeMutex);  
  12.     header = htonl(dataSize);  
  13.     ret = blockingWrite(fd, (void *)&header, sizeof(header));  
  14.     if (ret < 0) {  
  15.         pthread_mutex_unlock(&s_writeMutex);  
  16.         return ret;  
  17.     }  
  18.     ret = blockingWrite(fd, data, dataSize);  
  19.     if (ret < 0) {  
  20.         pthread_mutex_unlock(&s_writeMutex);  
  21.         return ret;  
  22.     }  
  23.     pthread_mutex_unlock(&s_writeMutex);  
  24.     return 0;  
  25. }  
static int sendResponseRaw (const void *data, size_t dataSize) {int fd = s_fdCommand;int ret;uint32_t header;if (s_fdCommand < 0) {return -1;}if (dataSize > MAX_COMMAND_BYTES) {return -1;}pthread_mutex_lock(&s_writeMutex);header = htonl(dataSize);ret = blockingWrite(fd, (void *)&header, sizeof(header));if (ret < 0) {pthread_mutex_unlock(&s_writeMutex);return ret;}ret = blockingWrite(fd, data, dataSize);if (ret < 0) {pthread_mutex_unlock(&s_writeMutex);return ret;}pthread_mutex_unlock(&s_writeMutex);return 0;
}
拨打电话的时序图如下:


Rild通过onRequest向动态库提交一个请求,然后返回,动态库处理完请求后,处理结果通过回调接口通知客户端

这篇关于RIL 机制源码分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/441890

相关文章

一文带你理解Python中import机制与importlib的妙用

《一文带你理解Python中import机制与importlib的妙用》在Python编程的世界里,import语句是开发者最常用的工具之一,它就像一把钥匙,打开了通往各种功能和库的大门,下面就跟随小... 目录一、python import机制概述1.1 import语句的基本用法1.2 模块缓存机制1.

Redis主从/哨兵机制原理分析

《Redis主从/哨兵机制原理分析》本文介绍了Redis的主从复制和哨兵机制,主从复制实现了数据的热备份和负载均衡,而哨兵机制可以监控Redis集群,实现自动故障转移,哨兵机制通过监控、下线、选举和故... 目录一、主从复制1.1 什么是主从复制1.2 主从复制的作用1.3 主从复制原理1.3.1 全量复制

Redis缓存问题与缓存更新机制详解

《Redis缓存问题与缓存更新机制详解》本文主要介绍了缓存问题及其解决方案,包括缓存穿透、缓存击穿、缓存雪崩等问题的成因以及相应的预防和解决方法,同时,还详细探讨了缓存更新机制,包括不同情况下的缓存更... 目录一、缓存问题1.1 缓存穿透1.1.1 问题来源1.1.2 解决方案1.2 缓存击穿1.2.1

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

MySQL中的锁和MVCC机制解读

《MySQL中的锁和MVCC机制解读》MySQL事务、锁和MVCC机制是确保数据库操作原子性、一致性和隔离性的关键,事务必须遵循ACID原则,锁的类型包括表级锁、行级锁和意向锁,MVCC通过非锁定读和... 目录mysql的锁和MVCC机制事务的概念与ACID特性锁的类型及其工作机制锁的粒度与性能影响多版本

Redis主从复制的原理分析

《Redis主从复制的原理分析》Redis主从复制通过将数据镜像到多个从节点,实现高可用性和扩展性,主从复制包括初次全量同步和增量同步两个阶段,为优化复制性能,可以采用AOF持久化、调整复制超时时间、... 目录Redis主从复制的原理主从复制概述配置主从复制数据同步过程复制一致性与延迟故障转移机制监控与维

Redis连接失败:客户端IP不在白名单中的问题分析与解决方案

《Redis连接失败:客户端IP不在白名单中的问题分析与解决方案》在现代分布式系统中,Redis作为一种高性能的内存数据库,被广泛应用于缓存、消息队列、会话存储等场景,然而,在实际使用过程中,我们可能... 目录一、问题背景二、错误分析1. 错误信息解读2. 根本原因三、解决方案1. 将客户端IP添加到Re

Java汇编源码如何查看环境搭建

《Java汇编源码如何查看环境搭建》:本文主要介绍如何在IntelliJIDEA开发环境中搭建字节码和汇编环境,以便更好地进行代码调优和JVM学习,首先,介绍了如何配置IntelliJIDEA以方... 目录一、简介二、在IDEA开发环境中搭建汇编环境2.1 在IDEA中搭建字节码查看环境2.1.1 搭建步

Redis主从复制实现原理分析

《Redis主从复制实现原理分析》Redis主从复制通过Sync和CommandPropagate阶段实现数据同步,2.8版本后引入Psync指令,根据复制偏移量进行全量或部分同步,优化了数据传输效率... 目录Redis主DodMIK从复制实现原理实现原理Psync: 2.8版本后总结Redis主从复制实

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专