Loki安装部署

2023-12-01 04:12
文章标签 部署 安装 loki

本文主要是介绍Loki安装部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Loki安装部署

1、Loki介绍

Loki 是受 Prometheus 启发由 Grafana Labs 团队开源的水平可扩展,高度可用的多租户日志聚合系统。开发语

言: Google Go。它的设计具有很高的成本效益,并且易于操作。使用标签来作为索引,而不是对全文进行检索,

也就是说,你通过这些标签既可以查询日志的内容也可以查询到监控的数据签,极大地降低了日志索引的存储。

Loki 对标 EFK/ELK,由于其轻量的设计,备受欢迎,Loki 相比 EFK/ELK,它不对原始日志进行索引,只对日志的

标签进行索引,而日志通过压缩进行存储,通常是文件系统存储,所以其操作成本更低,数量级效率更高。

由于 Loki 的存储都是基于文件系统的,所以它的日志搜索时基于内容即日志行中的文本,所以它的查询支持

LogQL,在搜索窗口中通过过滤标签的方式进行搜索和查询。

Loki文档网址:https://grafana.com/docs/loki/latest/

下载网址:https://github.com/grafana/loki/releases

Github Loki:https://github.com/grafana/helm-charts/tree/main/charts/loki-stack

2、Loki架构

Loki 架构如下图所示:

在这里插入图片描述

Loki 分两部分,Loki 是日志引擎部分,Promtail 是收集日志端。

  • Loki 是主服务器,负责存储日志和处理查询 。
  • promtail 是代理,负责收集日志并将其发送给 loki 。

promtail 是日志收集 client;loki 是日志收集 service,它是一个时间序列数据库,可以作为 Granfna 的数据源

(类似于prometheus),同时它也有 Alert Rule 规则功能,可以向 Alertmanager 发送告警信息;而 Alertmanager

是一个独立的组件,专注于告警处理。

Loki 的数据可以通过Grafana进行展示。

只要在应用程序服务器上安装 promtail 来收集日志然后发送给 Loki 存储,就可以在 Grafana UI 界面通过添加

Loki 为数据源进行日志查询(如果 Loki 服务器性能不够,可以部署多个 Loki 进行存储及查询)。作为一个日志

系统不光只有查询分析日志的能力,还能对日志进行监控和报警。

Promtail 客户端采集日志数据,将其索引并存储在后端持久化存储中。

用户可以使用 LogQL 查询语言来过滤和检索特定的日志记录,并通过 Grafana 的集成来进行可视化分析。

3、Loki工作流程

在这里插入图片描述

1、promtail 收集并将日志发送给 loki 的 Distributor 组件。

2、Distributor 会对接收到的日志流进行正确性校验,并将验证后的日志分批并行发送到 Ingester。

3、Ingester 接受日志流并构建数据块,压缩后存放到所连接的存储后端。

4、Querier 收到 HTTP 查询请求,并将请求发送至 Ingester 用以获取内存数据 ,Ingester 收到请求后返回符合

条件的数据 ;如果 Ingester 没有返回数据,Querier 会从后端存储加载数据并遍历去重执行查询 ,通过 HTTP 返

回查询结果。

  • Promtail(采集器):Loki 默认客户端,负责采集并上报日志。

  • Distributor(分发器): Distributor 是 Loki 的入口组件,负责接收来自客户端的日志数据,并将其分发给不

    同的 ingester 节点。

  • Ingester(摄取器): Ingester 负责接收并保存来自 Distributor 的日志数据。它将数据写入本地存储,并将

    索引相关的元数据发送给 index 组件。

  • Index(索引): Index 组件负责管理和维护 Loki 中的索引数据结构。

  • Chunks(块文件): Chunks 是 Loki 中日志数据的物理存储形式。

  • Querier(查询器): Querier 是用于查询 Loki 中日志数据的组件。

4、LPG(Loki+Promtail+Grafana)与ELK比较优势

ELK 虽然功能丰富,但规模复杂,资源占用高,操作苦难,很多功能往往用不上,有点杀鸡用牛刀的感觉。loki 不

对日志进行全文索引。通过存储压缩非结构化日志和索引元数据,Loki 操作起来会更简单,更省成本。通过使用

与 Prometheus 相同的标签记录流对日志进行索引和分组,这使得日志的扩展和操作效率更高。安装部署简单快

速,且受 Grafana 原生支持。

架构和组件:

  • Loki:Loki 是一个开源的水平可扩展日志聚合系统,由 Promtail、Loki 和 Grafana 组成。
  • EFK:EFK 是一个集成的解决方案,由 Elasticsearch、Fluentd 和 Kibana 组成。

存储和查询:

  • Loki:Loki 使用了基于日志流的存储方式,将日志数据存储为可压缩的块文件,并达到高度压缩效率。
  • EFK:EFK 使用 Elasticsearch 作为中心化的日志存储和索引引擎。

可扩展性和资源消耗:

  • Loki:Loki 的水平可扩展性非常好,可以处理大规模的日志数据。
  • EFK:Elasticsearch 是一个高度可扩展的分布式存储系统,但它对硬件资源的要求较高,特别是在存储大规模日志数据时。

配置和部署复杂性:

  • Loki:Loki 的配置和部署较为简单。通过使用 Promtail 收集日志,并使用 Grafana 进行查询和可视化,可以

    相对快速地启动和使用。

  • EFK:EFK 的配置和部署相对复杂一些。需要配置 Fluentd 的输入、过滤和输出插件,以及 Elasticsearch 和

    Kibana 的集群设置。

5、Loki安装

这里通过编译好的二进制可执行文件进行安装。

下载地址:https://github.com/grafana/loki/releases/

配置文件参考地址:https://grafana.com/docs/loki/latest/configure/

5.1 下载Loki

# 下载
$ curl -O -L "https://github.com/grafana/loki/releases/download/v2.8.6/loki-linux-amd64.zip"
# 解压
# 解压之后只有一个二进制文件loki-linux-amd64
$ unzip "loki-linux-amd64.zip"
# 授权
$ chmod a+x "loki-linux-amd64"
# 查看版本
$ ./loki-linux-amd64 --version
loki, version 2.8.6 (branch: HEAD, revision: 990ac685e)build user:       root@75d791293cbebuild date:       2023-10-17T14:27:04Zgo version:       go1.20.10platform:         linux/amd64

5.2 下载Promtail

# 下载
$ curl -O -L "https://github.com/grafana/loki/releases/download/v2.8.6/promtail-linux-amd64.zip"
# 解压
# 解压之后只有一个二进制文件promtail-linux-amd64
$ unzip "promtail-linux-amd64.zip"
# 授权
$ chmod a+x "promtail-linux-amd64"
# 查看版本
$ ./promtail-linux-amd64 --version
promtail, version 2.8.6 (branch: HEAD, revision: 990ac685e)build user:       root@75d791293cbebuild date:       2023-10-17T14:27:04Zgo version:       go1.20.10platform:         linux/amd64

5.3 Loki配置文件

loki 配置文件:loki_config.yaml

auth_enabled: falseserver:# http监听端口,代理服务(promtail)会向此端口发送日志流http_listen_port: 3100# grpc监听端口grpc_listen_port: 3110# grpc最大接收消息值,默认4Mgrpc_server_max_recv_msg_size: 1073741824# grpc最大发送消息值,默认4Mgrpc_server_max_send_msg_size: 1073741824ingester:lifecycler:address: 192.168.151.195ring:kvstore:store: inmemoryreplication_factor: 1final_sleep: 0schunk_idle_period: 5mchunk_retain_period: 30smax_transfer_retries: 0# 一个timeseries块在内存中的最大持续时间,如果timeseries运行的时间超过此时间,则当前块将刷新到存储并创建一个新块max_chunk_age: 20mschema_config:configs:# 2020-10-24之后loki信息用下面的配置,这个主要是用来做兼容的- from: 2020-10-24# 索引使用哪种存储,还有boltdb-shipperstore: boltdb# 怎么存储,简单部署的话保存在本地文件系统object_store: filesystem# 版本schema: v11# 索引怎么更新和存储index: # 索引前缀prefix: index_# 索引期限168小时,每张表的时间范围7天period: 168hstorage_config:boltdb:# 索引文件存储地址directory: /data/loki/indexfilesystem:# 块存储地址directory: /data/loki/chunkslimits_config:enforce_metric_name: falsereject_old_samples: truereject_old_samples_max_age: 168h# 修改每用户摄入速率限制,即每秒样本量,默认值为4Mingestion_rate_mb: 30# 修改每用户摄入速率限制,即每秒样本量,默认值为6Mingestion_burst_size_mb: 15# 若不需要清理日志,以下配置均可删除
chunk_store_config:# 最大日志可见时间,回看日志行的最大时间,只适用于即时日志# 最大可查询历史日期28天,这个时间必须是schema_config中的period的倍数,否则报错# max_look_back_period: 168hmax_look_back_period: 0stable_manager:# 日志保留周期开关,默认为falseretention_deletes_enabled: false# 日志保留周期# 表的保留期28天# retention_period: 672hretention_period: 0sruler:# 告警地址,简单部署沿用即可alertmanager_url: http://192.168.151.195:9093analytics:# 关闭向loki团队发送此配置文件reporting_enabled: false# 默认配置
common:# 默认的路径前缀path_prefix: /data/lokistorage:filesystem:# 压缩后的日志,存储在这个目录chunks_directory: /data/loki/chunks# 一些告警规则和查找规则,存储在这个目录,简单部署不用管rules_directory: /data/loki/rules# 简单部署不用管replication_factor: 1# 哈希环配置,简单部署不用管ring:# 一般为部署loki的机器的ipinstance_addr: 192.168.151.195kvstore:# 沿用即可store: inmemorycompactor:# compactor运行状态保存目录working_directory: /data/loki/compactorshared_store: filesystem# 启动日志删除retention_enabled: true# compactor每隔10分钟运行一次compaction_interval:  10m# 在compactor运行2小时后删除retention_delete_delay: 2h# 用150个worker删除chunksretention_delete_worker_count: 150

5.4 Promtail配置文件

promtail 配置文件:promtail_config.yaml

server:# 监听端口http_listen_port: 9080# gRPC服务监听的端口(表示随机)grpc_listen_port: 0# grpc最大接收消息值,默认4Mgrpc_server_max_recv_msg_size: 900000000000# grpc最大发送消息值,默认4Mgrpc_server_max_send_msg_size: 900000000000positions:# romtail保存文件的位置,服务异常关闭,启时可以继续在中断处继续采集,文件保存日志采集进度filename: ./ositions.yamlclients:# oki接收日志的地址- url: http://192.168.151.195:3100/loki/api/v1/pushbatchwait: 10sbatchsize: 40960000# 日志采集配置
scrape_configs:
# 这个随意配置
- job_name: test static_configs:- targets:- localhostlabels:# note,host,server,level自己定义的标签,根据自己需要改动note: gl01host: zsx1server: 192.168.151.195level: info# 从此文件采集的日志会被打上上面的4个标签,支持正则__path__: /opt/logs/info.log- targets:- localhostlabels:note: gl02host: zsx2server: 192.168.151.196level: error__path__: /opt/logs/error.log
# 日志文件
$ cat /opt/logs/info.log
[INFO] Hello
[INFO] World$ cat /opt/logs/error.log
[ERROR] Bad
[ERROR] Now

5.5 启动

# 启动loki
$ nohup ./loki-linux-amd64 --config.file=loki_config.yaml > loki.out 2>&1 &
# 启动promtail
$ nohup ./promtail-linux-amd64 --config.file=promtail_config.yaml > promtail.out 2>&1 &
# 查看进程
$ ps -ef | grep loki
$ ps -ef | grep promtail

6、使用Grafana查询日志

Grafana的安装请参考:

https://blog.csdn.net/qq_30614345/article/details/131261635

6.1 配置Grafana Loki数据源

访问Grafana:

在这里插入图片描述

在这里插入图片描述

配置数据源:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

填写相关信息:

在这里插入图片描述

点击测试连接:

在这里插入图片描述

回到主页:

在这里插入图片描述

6.2 进行查询

点击Explore:

在这里插入图片描述

在这里插入图片描述

选择loki数据源:

在这里插入图片描述

输入查询条件:

{host="zsx1",note="gl01",server="192.168.151.195"}

在这里插入图片描述

# 对Hello进行筛选
{host="zsx1",note="gl01",server="192.168.151.195"} |= "Hello"

在这里插入图片描述

6.3 标签筛选

在这里插入图片描述

红色框中生成的为查询 LogQL,后面我们将对 LogQL 进行介绍。

也可以对时间进行筛选:

在这里插入图片描述

至此,Loki + promtail + Grafana 部署完毕。

这篇关于Loki安装部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439745

相关文章

Pycharm安装报错:Cannot detect a launch configuration解决办法

《Pycharm安装报错:Cannotdetectalaunchconfiguration解决办法》本文主要介绍了Pycharm安装报错:Cannotdetectalaunchconfigur... 本文主要介绍了Pycharm安装报错:Cannot detect a launch configuratio

pytorch+torchvision+python版本对应及环境安装

《pytorch+torchvision+python版本对应及环境安装》本文主要介绍了pytorch+torchvision+python版本对应及环境安装,安装过程中需要注意Numpy版本的降级,... 目录一、版本对应二、安装命令(pip)1. 版本2. 安装全过程3. 命令相关解释参考文章一、版本对

Windows系统下如何查找JDK的安装路径

《Windows系统下如何查找JDK的安装路径》:本文主要介绍Windows系统下如何查找JDK的安装路径,文中介绍了三种方法,分别是通过命令行检查、使用verbose选项查找jre目录、以及查看... 目录一、确认是否安装了JDK二、查找路径三、另外一种方式如果很久之前安装了JDK,或者在别人的电脑上,想

大数据spark3.5安装部署之local模式详解

《大数据spark3.5安装部署之local模式详解》本文介绍了如何在本地模式下安装和配置Spark,并展示了如何使用SparkShell进行基本的数据处理操作,同时,还介绍了如何通过Spark-su... 目录下载上传解压配置jdk解压配置环境变量启动查看交互操作命令行提交应用spark,一个数据处理框架

Python FastAPI入门安装使用

《PythonFastAPI入门安装使用》FastAPI是一个现代、快速的PythonWeb框架,用于构建API,它基于Python3.6+的类型提示特性,使得代码更加简洁且易于绶护,这篇文章主要介... 目录第一节:FastAPI入门一、FastAPI框架介绍什么是ASGI服务(WSGI)二、FastAP

2025最新版Python3.13.1安装使用指南(超详细)

《2025最新版Python3.13.1安装使用指南(超详细)》Python编程语言自诞生以来,已经成为全球最受欢迎的编程语言之一,它简单易学易用,以标准库和功能强大且广泛外挂的扩展库,为用户提供包罗... 目录2025最新版python 3.13.1安装使用指南1. 2025年Python语言最新排名2.

Python依赖库的几种离线安装方法总结

《Python依赖库的几种离线安装方法总结》:本文主要介绍如何在Python中使用pip工具进行依赖库的安装和管理,包括如何导出和导入依赖包列表、如何下载和安装单个或多个库包及其依赖,以及如何指定... 目录前言一、如何copy一个python环境二、如何下载一个包及其依赖并安装三、如何导出requirem

Windows环境下安装达梦数据库的完整步骤

《Windows环境下安装达梦数据库的完整步骤》达梦数据库的安装大致分为Windows和Linux版本,本文将以dm8企业版Windows_64位环境为例,为大家介绍一下达梦数据库的具体安装步骤吧... 目录环境介绍1 下载解压安装包2 根据安装手册安装2.1 选择语言 时区2.2 安装向导2.3 接受协议

IDEA与JDK、Maven安装配置完整步骤解析

《IDEA与JDK、Maven安装配置完整步骤解析》:本文主要介绍如何安装和配置IDE(IntelliJIDEA),包括IDE的安装步骤、JDK的下载与配置、Maven的安装与配置,以及如何在I... 目录1. IDE安装步骤2.配置操作步骤3. JDK配置下载JDK配置JDK环境变量4. Maven配置下

jdk21下载、安装详细教程(Windows、Linux、macOS)

《jdk21下载、安装详细教程(Windows、Linux、macOS)》本文介绍了OpenJDK21的下载地址和安装步骤,包括Windows、Linux和macOS平台,下载后解压并设置环境变量,最... 目录1、官网2、下载openjdk3、安装4、验证1、官网官网地址:OpenJDK下载地址:Ar