Loki安装部署

2023-12-01 04:12
文章标签 部署 安装 loki

本文主要是介绍Loki安装部署,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Loki安装部署

1、Loki介绍

Loki 是受 Prometheus 启发由 Grafana Labs 团队开源的水平可扩展,高度可用的多租户日志聚合系统。开发语

言: Google Go。它的设计具有很高的成本效益,并且易于操作。使用标签来作为索引,而不是对全文进行检索,

也就是说,你通过这些标签既可以查询日志的内容也可以查询到监控的数据签,极大地降低了日志索引的存储。

Loki 对标 EFK/ELK,由于其轻量的设计,备受欢迎,Loki 相比 EFK/ELK,它不对原始日志进行索引,只对日志的

标签进行索引,而日志通过压缩进行存储,通常是文件系统存储,所以其操作成本更低,数量级效率更高。

由于 Loki 的存储都是基于文件系统的,所以它的日志搜索时基于内容即日志行中的文本,所以它的查询支持

LogQL,在搜索窗口中通过过滤标签的方式进行搜索和查询。

Loki文档网址:https://grafana.com/docs/loki/latest/

下载网址:https://github.com/grafana/loki/releases

Github Loki:https://github.com/grafana/helm-charts/tree/main/charts/loki-stack

2、Loki架构

Loki 架构如下图所示:

在这里插入图片描述

Loki 分两部分,Loki 是日志引擎部分,Promtail 是收集日志端。

  • Loki 是主服务器,负责存储日志和处理查询 。
  • promtail 是代理,负责收集日志并将其发送给 loki 。

promtail 是日志收集 client;loki 是日志收集 service,它是一个时间序列数据库,可以作为 Granfna 的数据源

(类似于prometheus),同时它也有 Alert Rule 规则功能,可以向 Alertmanager 发送告警信息;而 Alertmanager

是一个独立的组件,专注于告警处理。

Loki 的数据可以通过Grafana进行展示。

只要在应用程序服务器上安装 promtail 来收集日志然后发送给 Loki 存储,就可以在 Grafana UI 界面通过添加

Loki 为数据源进行日志查询(如果 Loki 服务器性能不够,可以部署多个 Loki 进行存储及查询)。作为一个日志

系统不光只有查询分析日志的能力,还能对日志进行监控和报警。

Promtail 客户端采集日志数据,将其索引并存储在后端持久化存储中。

用户可以使用 LogQL 查询语言来过滤和检索特定的日志记录,并通过 Grafana 的集成来进行可视化分析。

3、Loki工作流程

在这里插入图片描述

1、promtail 收集并将日志发送给 loki 的 Distributor 组件。

2、Distributor 会对接收到的日志流进行正确性校验,并将验证后的日志分批并行发送到 Ingester。

3、Ingester 接受日志流并构建数据块,压缩后存放到所连接的存储后端。

4、Querier 收到 HTTP 查询请求,并将请求发送至 Ingester 用以获取内存数据 ,Ingester 收到请求后返回符合

条件的数据 ;如果 Ingester 没有返回数据,Querier 会从后端存储加载数据并遍历去重执行查询 ,通过 HTTP 返

回查询结果。

  • Promtail(采集器):Loki 默认客户端,负责采集并上报日志。

  • Distributor(分发器): Distributor 是 Loki 的入口组件,负责接收来自客户端的日志数据,并将其分发给不

    同的 ingester 节点。

  • Ingester(摄取器): Ingester 负责接收并保存来自 Distributor 的日志数据。它将数据写入本地存储,并将

    索引相关的元数据发送给 index 组件。

  • Index(索引): Index 组件负责管理和维护 Loki 中的索引数据结构。

  • Chunks(块文件): Chunks 是 Loki 中日志数据的物理存储形式。

  • Querier(查询器): Querier 是用于查询 Loki 中日志数据的组件。

4、LPG(Loki+Promtail+Grafana)与ELK比较优势

ELK 虽然功能丰富,但规模复杂,资源占用高,操作苦难,很多功能往往用不上,有点杀鸡用牛刀的感觉。loki 不

对日志进行全文索引。通过存储压缩非结构化日志和索引元数据,Loki 操作起来会更简单,更省成本。通过使用

与 Prometheus 相同的标签记录流对日志进行索引和分组,这使得日志的扩展和操作效率更高。安装部署简单快

速,且受 Grafana 原生支持。

架构和组件:

  • Loki:Loki 是一个开源的水平可扩展日志聚合系统,由 Promtail、Loki 和 Grafana 组成。
  • EFK:EFK 是一个集成的解决方案,由 Elasticsearch、Fluentd 和 Kibana 组成。

存储和查询:

  • Loki:Loki 使用了基于日志流的存储方式,将日志数据存储为可压缩的块文件,并达到高度压缩效率。
  • EFK:EFK 使用 Elasticsearch 作为中心化的日志存储和索引引擎。

可扩展性和资源消耗:

  • Loki:Loki 的水平可扩展性非常好,可以处理大规模的日志数据。
  • EFK:Elasticsearch 是一个高度可扩展的分布式存储系统,但它对硬件资源的要求较高,特别是在存储大规模日志数据时。

配置和部署复杂性:

  • Loki:Loki 的配置和部署较为简单。通过使用 Promtail 收集日志,并使用 Grafana 进行查询和可视化,可以

    相对快速地启动和使用。

  • EFK:EFK 的配置和部署相对复杂一些。需要配置 Fluentd 的输入、过滤和输出插件,以及 Elasticsearch 和

    Kibana 的集群设置。

5、Loki安装

这里通过编译好的二进制可执行文件进行安装。

下载地址:https://github.com/grafana/loki/releases/

配置文件参考地址:https://grafana.com/docs/loki/latest/configure/

5.1 下载Loki

# 下载
$ curl -O -L "https://github.com/grafana/loki/releases/download/v2.8.6/loki-linux-amd64.zip"
# 解压
# 解压之后只有一个二进制文件loki-linux-amd64
$ unzip "loki-linux-amd64.zip"
# 授权
$ chmod a+x "loki-linux-amd64"
# 查看版本
$ ./loki-linux-amd64 --version
loki, version 2.8.6 (branch: HEAD, revision: 990ac685e)build user:       root@75d791293cbebuild date:       2023-10-17T14:27:04Zgo version:       go1.20.10platform:         linux/amd64

5.2 下载Promtail

# 下载
$ curl -O -L "https://github.com/grafana/loki/releases/download/v2.8.6/promtail-linux-amd64.zip"
# 解压
# 解压之后只有一个二进制文件promtail-linux-amd64
$ unzip "promtail-linux-amd64.zip"
# 授权
$ chmod a+x "promtail-linux-amd64"
# 查看版本
$ ./promtail-linux-amd64 --version
promtail, version 2.8.6 (branch: HEAD, revision: 990ac685e)build user:       root@75d791293cbebuild date:       2023-10-17T14:27:04Zgo version:       go1.20.10platform:         linux/amd64

5.3 Loki配置文件

loki 配置文件:loki_config.yaml

auth_enabled: falseserver:# http监听端口,代理服务(promtail)会向此端口发送日志流http_listen_port: 3100# grpc监听端口grpc_listen_port: 3110# grpc最大接收消息值,默认4Mgrpc_server_max_recv_msg_size: 1073741824# grpc最大发送消息值,默认4Mgrpc_server_max_send_msg_size: 1073741824ingester:lifecycler:address: 192.168.151.195ring:kvstore:store: inmemoryreplication_factor: 1final_sleep: 0schunk_idle_period: 5mchunk_retain_period: 30smax_transfer_retries: 0# 一个timeseries块在内存中的最大持续时间,如果timeseries运行的时间超过此时间,则当前块将刷新到存储并创建一个新块max_chunk_age: 20mschema_config:configs:# 2020-10-24之后loki信息用下面的配置,这个主要是用来做兼容的- from: 2020-10-24# 索引使用哪种存储,还有boltdb-shipperstore: boltdb# 怎么存储,简单部署的话保存在本地文件系统object_store: filesystem# 版本schema: v11# 索引怎么更新和存储index: # 索引前缀prefix: index_# 索引期限168小时,每张表的时间范围7天period: 168hstorage_config:boltdb:# 索引文件存储地址directory: /data/loki/indexfilesystem:# 块存储地址directory: /data/loki/chunkslimits_config:enforce_metric_name: falsereject_old_samples: truereject_old_samples_max_age: 168h# 修改每用户摄入速率限制,即每秒样本量,默认值为4Mingestion_rate_mb: 30# 修改每用户摄入速率限制,即每秒样本量,默认值为6Mingestion_burst_size_mb: 15# 若不需要清理日志,以下配置均可删除
chunk_store_config:# 最大日志可见时间,回看日志行的最大时间,只适用于即时日志# 最大可查询历史日期28天,这个时间必须是schema_config中的period的倍数,否则报错# max_look_back_period: 168hmax_look_back_period: 0stable_manager:# 日志保留周期开关,默认为falseretention_deletes_enabled: false# 日志保留周期# 表的保留期28天# retention_period: 672hretention_period: 0sruler:# 告警地址,简单部署沿用即可alertmanager_url: http://192.168.151.195:9093analytics:# 关闭向loki团队发送此配置文件reporting_enabled: false# 默认配置
common:# 默认的路径前缀path_prefix: /data/lokistorage:filesystem:# 压缩后的日志,存储在这个目录chunks_directory: /data/loki/chunks# 一些告警规则和查找规则,存储在这个目录,简单部署不用管rules_directory: /data/loki/rules# 简单部署不用管replication_factor: 1# 哈希环配置,简单部署不用管ring:# 一般为部署loki的机器的ipinstance_addr: 192.168.151.195kvstore:# 沿用即可store: inmemorycompactor:# compactor运行状态保存目录working_directory: /data/loki/compactorshared_store: filesystem# 启动日志删除retention_enabled: true# compactor每隔10分钟运行一次compaction_interval:  10m# 在compactor运行2小时后删除retention_delete_delay: 2h# 用150个worker删除chunksretention_delete_worker_count: 150

5.4 Promtail配置文件

promtail 配置文件:promtail_config.yaml

server:# 监听端口http_listen_port: 9080# gRPC服务监听的端口(表示随机)grpc_listen_port: 0# grpc最大接收消息值,默认4Mgrpc_server_max_recv_msg_size: 900000000000# grpc最大发送消息值,默认4Mgrpc_server_max_send_msg_size: 900000000000positions:# romtail保存文件的位置,服务异常关闭,启时可以继续在中断处继续采集,文件保存日志采集进度filename: ./ositions.yamlclients:# oki接收日志的地址- url: http://192.168.151.195:3100/loki/api/v1/pushbatchwait: 10sbatchsize: 40960000# 日志采集配置
scrape_configs:
# 这个随意配置
- job_name: test static_configs:- targets:- localhostlabels:# note,host,server,level自己定义的标签,根据自己需要改动note: gl01host: zsx1server: 192.168.151.195level: info# 从此文件采集的日志会被打上上面的4个标签,支持正则__path__: /opt/logs/info.log- targets:- localhostlabels:note: gl02host: zsx2server: 192.168.151.196level: error__path__: /opt/logs/error.log
# 日志文件
$ cat /opt/logs/info.log
[INFO] Hello
[INFO] World$ cat /opt/logs/error.log
[ERROR] Bad
[ERROR] Now

5.5 启动

# 启动loki
$ nohup ./loki-linux-amd64 --config.file=loki_config.yaml > loki.out 2>&1 &
# 启动promtail
$ nohup ./promtail-linux-amd64 --config.file=promtail_config.yaml > promtail.out 2>&1 &
# 查看进程
$ ps -ef | grep loki
$ ps -ef | grep promtail

6、使用Grafana查询日志

Grafana的安装请参考:

https://blog.csdn.net/qq_30614345/article/details/131261635

6.1 配置Grafana Loki数据源

访问Grafana:

在这里插入图片描述

在这里插入图片描述

配置数据源:

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

填写相关信息:

在这里插入图片描述

点击测试连接:

在这里插入图片描述

回到主页:

在这里插入图片描述

6.2 进行查询

点击Explore:

在这里插入图片描述

在这里插入图片描述

选择loki数据源:

在这里插入图片描述

输入查询条件:

{host="zsx1",note="gl01",server="192.168.151.195"}

在这里插入图片描述

# 对Hello进行筛选
{host="zsx1",note="gl01",server="192.168.151.195"} |= "Hello"

在这里插入图片描述

6.3 标签筛选

在这里插入图片描述

红色框中生成的为查询 LogQL,后面我们将对 LogQL 进行介绍。

也可以对时间进行筛选:

在这里插入图片描述

至此,Loki + promtail + Grafana 部署完毕。

这篇关于Loki安装部署的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/439744

相关文章

闲置电脑也能活出第二春?鲁大师AiNAS让你动动手指就能轻松部署

对于大多数人而言,在这个“数据爆炸”的时代或多或少都遇到过存储告急的情况,这使得“存储焦虑”不再是个别现象,而将会是随着软件的不断臃肿而越来越普遍的情况。从不少手机厂商都开始将存储上限提升至1TB可以见得,我们似乎正处在互联网信息飞速增长的阶段,对于存储的需求也将会不断扩大。对于苹果用户而言,这一问题愈发严峻,毕竟512GB和1TB版本的iPhone可不是人人都消费得起的,因此成熟的外置存储方案开

Zookeeper安装和配置说明

一、Zookeeper的搭建方式 Zookeeper安装方式有三种,单机模式和集群模式以及伪集群模式。 ■ 单机模式:Zookeeper只运行在一台服务器上,适合测试环境; ■ 伪集群模式:就是在一台物理机上运行多个Zookeeper 实例; ■ 集群模式:Zookeeper运行于一个集群上,适合生产环境,这个计算机集群被称为一个“集合体”(ensemble) Zookeeper通过复制来实现

CentOS7安装配置mysql5.7 tar免安装版

一、CentOS7.4系统自带mariadb # 查看系统自带的Mariadb[root@localhost~]# rpm -qa|grep mariadbmariadb-libs-5.5.44-2.el7.centos.x86_64# 卸载系统自带的Mariadb[root@localhost ~]# rpm -e --nodeps mariadb-libs-5.5.44-2.el7

Centos7安装Mongodb4

1、下载源码包 curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-4.2.1.tgz 2、解压 放到 /usr/local/ 目录下 tar -zxvf mongodb-linux-x86_64-rhel70-4.2.1.tgzmv mongodb-linux-x86_64-rhel70-4.2.1/

Centos7安装JDK1.8保姆版

工欲善其事,必先利其器。这句话同样适用于学习Java编程。在开始Java的学习旅程之前,我们必须首先配置好适合的开发环境。 通过事先准备好这些工具和配置,我们可以避免在学习过程中遇到因环境问题导致的代码异常或错误。一个稳定、高效的开发环境能够让我们更加专注于代码的学习和编写,提升学习效率,减少不必要的困扰和挫折感。因此,在学习Java之初,投入一些时间和精力来配置好开发环境是非常值得的。这将为我

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP