从原理和公式出发:python实现One_Way_ANOVA

2023-11-30 21:36

本文主要是介绍从原理和公式出发:python实现One_Way_ANOVA,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 目的:python实现one way ANOVA 单因素方差分析
    • 1. 代码流程
    • 2. python代码实现
      • 0 主要的函数
      • 1 加载数据
      • 2 查看数据统计结果
      • 3 数据处理及可视化
      • 4 方差分析
        • 4.1 模型拟合
        • 4.2 单因素方差分析
      • 5 Post Hoc t-test组间比较分析
      • 6 根据定义自行分解计算对比调用函数的结果
      • 7 获取F分布对应的P值
    • 3. 方差分析公式及原理参考

目的:python实现one way ANOVA 单因素方差分析

方差分析 (Analysis of Variance, ANOVA) 是一种用于比较两个或多个样本均值
是否有显著差异的统计方法。它通过比较组间变异组内变异的大小关系,来判
样本均值是否有显著差异
请添加图片描述

1. 代码流程

a. 通过调用python的包来进行方差分析
b. 根据公式进行方差分析
c. 对比两种方法(工具包与手算)的结果,结果发现:一致
d. 最后附上方差分析的原理和计算公式

2. python代码实现

0 主要的函数

在这里插入图片描述

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as snsfrom scipy import stats                       # 里面有方差齐性检验方差
from statsmodels.formula.api import ols       # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm  # 方差分析import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)

在这里插入图片描述

1 加载数据

dataD = {'treat1':[390,410,372,382,None],'treat2':[375,348,354,364,362],'treat3':[413,383,408,None,None]}
data = pd.DataFrame(dataD)
data
treat1treat2treat3
0390.0375413.0
1410.0348383.0
2372.0354408.0
3382.0364NaN
4NaN362NaN

2 查看数据统计结果

data.describe()
treat1treat2treat3
count4.0000005.0000003.000000
mean388.500000360.600000401.333333
std16.11417610.28591316.072751
min372.000000348.000000383.000000
25%379.500000354.000000395.500000
50%386.000000362.000000408.000000
75%395.000000364.000000410.500000
max410.000000375.000000413.000000

3 数据处理及可视化

我们为了方便计算,将所有的数据合成一列,并画一下箱线图看一下

data_melt = data.melt()
data_melt.columns = ['Treat', 'value']
print(data_melt)
     Treat  value
0   treat1  390.0
1   treat1  410.0
2   treat1  372.0
3   treat1  382.0
4   treat1    NaN
5   treat2  375.0
6   treat2  348.0
7   treat2  354.0
8   treat2  364.0
9   treat2  362.0
10  treat3  413.0
11  treat3  383.0
12  treat3  408.0
13  treat3    NaN
14  treat3    NaN
import seaborn as sns
# plt.figure(dpi=600)
sns.boxplot(data = data_melt, x = 'Treat', y = 'value', palette = 'pastel',  # 控制箱子颜色)

请添加图片描述

4 方差分析

4.1 模型拟合
from statsmodels.formula.api import ols                    # 最小二乘法拟合
from statsmodels.stats.anova import anova_lm               # 方差分析
from statsmodels.stats.multicomp import pairwise_tukeyhsd  # post Hoc t_testmodel = ols('value ~C(Treat)', data = data_melt).fit()  # 最小二乘法拟合
# ols模型拟合的参数
print(model.params)# 模型拟合的均值:
# mean_treat1 = 388.5
# mean_treat2 = 388.5 - 27.9 = 360.6
# mean_treat3 = 388.5 + 12.833 = 401.33## 实际的均值:
# mean_treat1 = 388.500000	
# mean_treat2 = 360.600000	
# mean_treat3 = 401.333333
Intercept             388.500000
C(Treat)[T.treat2]    -27.900000
C(Treat)[T.treat3]     12.833333
dtype: float64

无论是普通线性模型还是广义线性模型,预测的都是自变量x取特定值时因变量y的平均值。

print(model.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:                  value   R-squared:                       0.673
Model:                            OLS   Adj. R-squared:                  0.600
Method:                 Least Squares   F-statistic:                     9.257
Date:                Thu, 30 Nov 2023   Prob (F-statistic):            0.00655
Time:                        16:43:18   Log-Likelihood:                -46.814
No. Observations:                  12   AIC:                             99.63
Df Residuals:                       9   BIC:                             101.1
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
======================================================================================coef    std err          t      P>|t|      [0.025      0.975]
--------------------------------------------------------------------------------------
Intercept            388.5000      6.910     56.224      0.000     372.869     404.131
C(Treat)[T.treat2]   -27.9000      9.271     -3.010      0.015     -48.871      -6.929
C(Treat)[T.treat3]    12.8333     10.555      1.216      0.255     -11.044      36.710
==============================================================================
Omnibus:                        0.469   Durbin-Watson:                   2.839
Prob(Omnibus):                  0.791   Jarque-Bera (JB):                0.509
Skew:                           0.080   Prob(JB):                        0.775
Kurtosis:                       2.004   Cond. No.                         3.80
==============================================================================Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
4.2 单因素方差分析
anova_table = anova_lm(model, type = 2)                 # 方差分析
pd.DataFrame(anova_table)                               # 查看方差分析结果
dfsum_sqmean_sqFPR(>F)
C(Treat)2.03536.0500001768.0250009.2573930.006547
Residual9.01718.866667190.985185NaNNaN

参数解释:

  1. df: degree of freedom 自由度:自由度是你现有数据中包含的可能性。

    • 例1:为什么当你求全班50个同学身高总和的时候自由度是49?
      因为如果把学号1到学号49的同学身高全都固定下来, 比方说总和为83米,而全班50个人的身高总和,为84.7米,
      那么第50个同学的身高必须为1.7米,没有任何自由变化的余地。
    • 例2:假设有三个数字,A+B+C=10,假设A为任意数取8,B为任意数取2,那么c就是0 这个等式才能成立,这个等式当中有三个未知量,
      但是可以有自由变换的数值只有两个,所以这个式子自由度就是3-1=2,所以样本当中能自由变化的数据个数叫做自由度。

    对于本案例:

    • K = 3: 共有3组,treat1,treat2,treat3。
    • n = 12: 3组共有12个测量值
    • df_C(Treat): K-1 = 3-1=2
    • df_Residual: n-k = 12-3 = 9
  2. sum_sq: error sum of square 误差平方和

    • 表示实验误差大小的偏差平方和,在相同的条件下各次测定值xi对测定平均值x的偏差平方后再加和∑(xi-x)2
  3. mean_sq: Mean Squared Error 均方误差

    • 均方误差是指参数估计值与参数真值之差平方的期望值
  • 可以发现,treat组间存在显著性差异,p=0.006547 < 0.5
    因为对比的组别超过三个,并且呈现出显著性差异,所以考虑使用事后检验(post hoc)进一步对比具体两两组别间的差异情况。

5 Post Hoc t-test组间比较分析

print(pairwise_tukeyhsd(data_melt['value'], data_melt['Treat']))
Multiple Comparison of Means - Tukey HSD, FWER=0.05
===============================================
group1 group2 meandiff p-adj lower upper reject
-----------------------------------------------
treat1 treat2      nan   nan   nan   nan  False
treat1 treat3      nan   nan   nan   nan  False
treat2 treat3      nan   nan   nan   nan  False
-----------------------------------------------

这里我们发现:

  • Q:单因素方差分析结果显著,但事后t检验两两比较均不显著,这样的结果合理吗?
  • A:合理,方差分析结果显著只说明组间可能存在显著差异,到底有无显著差异还要看事后比较

6 根据定义自行分解计算对比调用函数的结果

# 全部的算数平均数为:380.083
mean_all = ((390+410+372+382+375+348+354+364+362+413+383+408)/12)
# 3个品种的算数平均数分别为:388.5,360.6,401.33
print('总平均:\n', mean_all)
mean_k = data.mean(axis = 0)
print('组平均:\n', mean_k)
总平均:380.0833333333333
组平均:treat1    388.500000
treat2    360.600000
treat3    401.333333
dtype: float64
SS_A: 表示因素A的各水平之间的差异带来的影响,又被称为组间偏差。
SS_e: 表示随机误差的影响,又被称为组内偏差。
''' 组间方差 ''' 
SS_A = 4*(388.5-380.083)**2 + 5*(360.6-380.083)**2 + 3*(401.333-380.083)**2
df_A = 3-1  # 共3个水平
MS_A = SS_A/df_A
print("C(Treat) sum_sq:", SS_A)
print("C(Treat) mean_sq:", MS_A)''' 组内方差 ''' 
SS_e = (390-388.5)**2 + (410-388.5)**2 + (372-388.5)**2+(382-388.5)**2+\(375-360.6)**2+(348-360.6)**2+(354-360.6)**2+(364-360.6)**2+(362-360.6)**2+\(413-401.3)**2+(383-401.3)**2+(408-401.3)**2
df_e = 12-3  # 自由度:共12个样本,3个水平
MS_e = SS_e/df_e
print("Residual sum_sq:", SS_e)
print("Residual mean_sq:", MS_e)
C(Treat) sum_sq: 3536.007500999999
C(Treat) mean_sq: 1768.0037504999996Residual sum_sq: 1718.8700000000003
Residual mean_sq: 190.9855555555556
## 计算F
F = MS_A / MS_e
print("MS_A:", MS_A)
print("MS_e:", MS_e)
print("F:", F)
MS_A: 1768.0037504999996
MS_e: 190.9855555555556
F: 9.257264222716081

7 获取F分布对应的P值

from scipy.stats import f                           #导入f
PR = f.sf(F, df_A, df_e)
print(PR)m = df_A      #设置自由度m
n = df_e      #设置自由度n
alpha=0.05    #设置alphaa=f.ppf(q=alpha, dfn=m, dfd=n)                      #单侧左分位点
b=f.isf(q=alpha, dfn=m, dfd=n)                      #单侧右分位点
print('单侧左、右分位点:a=%.4f, b=%.4f'%(a, b))a1, b1=f.interval(1-alpha, dfn=m, dfd=n)              #双侧分位点
print('双侧左、右分位点:a=%.4f, b=%.4f'%(a1, b1))## 可以发现 MS_A/MS_e = 9.25 > Fm,n(0.05) = 5.7147  拒绝原假设H0,即存在组间差异
0.0065472957497462216
单侧左、右分位点:a=0.0516, b=4.2565
双侧左、右分位点:a=0.0254, b=5.7147

3. 方差分析公式及原理参考

请添加图片描述
在这里插入图片描述

原理参考:https://zhuanlan.zhihu.com/p/33357167 (方差分析的好文章)

这篇关于从原理和公式出发:python实现One_Way_ANOVA的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438649

相关文章

使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)

《使用Java解析JSON数据并提取特定字段的实现步骤(以提取mailNo为例)》在现代软件开发中,处理JSON数据是一项非常常见的任务,无论是从API接口获取数据,还是将数据存储为JSON格式,解析... 目录1. 背景介绍1.1 jsON简介1.2 实际案例2. 准备工作2.1 环境搭建2.1.1 添加

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

java如何分布式锁实现和选型

《java如何分布式锁实现和选型》文章介绍了分布式锁的重要性以及在分布式系统中常见的问题和需求,它详细阐述了如何使用分布式锁来确保数据的一致性和系统的高可用性,文章还提供了基于数据库、Redis和Zo... 目录引言:分布式锁的重要性与分布式系统中的常见问题和需求分布式锁的重要性分布式系统中常见的问题和需求

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

使用Python绘制蛇年春节祝福艺术图

《使用Python绘制蛇年春节祝福艺术图》:本文主要介绍如何使用Python的Matplotlib库绘制一幅富有创意的“蛇年有福”艺术图,这幅图结合了数字,蛇形,花朵等装饰,需要的可以参考下... 目录1. 绘图的基本概念2. 准备工作3. 实现代码解析3.1 设置绘图画布3.2 绘制数字“2025”3.3

python使用watchdog实现文件资源监控

《python使用watchdog实现文件资源监控》watchdog支持跨平台文件资源监控,可以检测指定文件夹下文件及文件夹变动,下面我们来看看Python如何使用watchdog实现文件资源监控吧... python文件监控库watchdogs简介随着Python在各种应用领域中的广泛使用,其生态环境也

el-select下拉选择缓存的实现

《el-select下拉选择缓存的实现》本文主要介绍了在使用el-select实现下拉选择缓存时遇到的问题及解决方案,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录项目场景:问题描述解决方案:项目场景:从左侧列表中选取字段填入右侧下拉多选框,用户可以对右侧

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python

python 字典d[k]中key不存在的解决方案

《python字典d[k]中key不存在的解决方案》本文主要介绍了在Python中处理字典键不存在时获取默认值的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,... 目录defaultdict:处理找不到的键的一个选择特殊方法__missing__有时候为了方便起见,