SimMIM:一种更简单的MIM方法

2023-11-30 20:32
文章标签 简单 方法 一种 mim simmim

本文主要是介绍SimMIM:一种更简单的MIM方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

自从何恺明的MAE(←点击蓝字查看文章详情)出来之后,基于MIM(Masked Image Modeling)的无监督学习方法越来越受到关注。这里介绍一篇和MAE同期的工作:SimMIM: A Simple Framework for Masked Image Modeling,研究团队是微软亚研院。

SimMIM和MAE有很多相似的设计和结论,而且效果也比较接近,比如基于ViT-B的模型无监督训练后再finetune可以ImageNet数据集达到83.8%的top1 accuray(MAE为83.6%)。不过相比MAE,SimMIM更加简单,而且也可以用来无监督训练金字塔结构的vision transformer模型如swin transformer等。目前SimMIM实现代码已经开源,本文将基于论文和源码对SimMIM方法进行解读。

图片

算法原理

SimMIM采用最简单的MIM方法:随机mask掉输入图像的一部分patch,然后通过encoder-decoder来预测masked patchs的原始像素值。算法原理图如上图所示,从设计方面和MAE基本一致。SimMIM的主要结论如下:

  • 直接对图像采用简单的random mask是非常简单有效的方法;

  • 直接回归原始的像素的RGB值不比BEiT采用的分类效果差;

  • decoder采用轻量级的设计(直接采用一个线性层)也能得到很好的效果;

这些结论也是在MAE论文中得到了验证。那么SimMIM和MAE的区别在哪里呢?主要有以下两点:

  • SimMIM的encoder同时处理visible tokens和masked tokens,而MAE的encoder只处理visible tokens;

  • SimMIM的decoder只采用一个线性层来回归像素值,而MAE的decoder采用transformer结构;

第2个差异带来的影响相对很小,因为两个论文都证明了decoder设计对性能影响较小。主要的差异点是第一个,MAE训练时只处理visible tokens一方面可以加速训练(减少了计算量),同时也可以减少pre-training和deploy之间的gap(deploy时输入是非masked的图像,无masked token),MAE实验也证明只处理visible tokens可以提升linear probing性能:73.5% vs 59.6%。

而SimMIM是处理所有的tokens,从实验结果上看也符合MAE的结论,SimMIM方法得到的ViT-B模型的linear probing只有56.7%,不过这不并不会影响finetune后的性能,关于这点MAE论文也论证了。不过SimMIM这样做带来的一个好处是可以用来训练其它非“同质结构”模型,比如swin transformer,由于它各个stage间要对patch进行merge操作,所以token并不是像ViT那样一成不变的。下面我们具体介绍SimMIM的各个部分,这里默认实验都是以Swin-B为encoder,为了减少实验成本,输入图像大小为192x192(原来是224),window size设置为6(原来是7),预训练epoch为100。

Masking Strategy

SimMIM的masking策略按照一定mask ratio随机mask掉一部分patch。在MAE中,masked patch size和ViT的patch size是一致的,比如ViT-B/16模型,masked patch size就要设计为16x16,然后用一个可学习的masked token来代替。但是对于SimMIM,其设计masked patch size不一定等于模型的patch size,比如ViT模型masked patch size可以是32x32,理论上mask patch size只要是ViT模型patch size的整数倍就可以,因此此时每个mask掉的patch可以整分成和模型patch一样大小的若干个patch。

对于金字塔结构的swin transformer,每个stage的patch size是不同的,比如第一个stage的patch size是4x4,而最后一个stage的patch size是32x32,此时设计的mask patch size只需要是第一个stage的patch size整数就好。无论

这篇关于SimMIM:一种更简单的MIM方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/438440

相关文章

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

Git中恢复已删除分支的几种方法

《Git中恢复已删除分支的几种方法》:本文主要介绍在Git中恢复已删除分支的几种方法,包括查找提交记录、恢复分支、推送恢复的分支等步骤,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录1. 恢复本地删除的分支场景方法2. 恢复远程删除的分支场景方法3. 恢复未推送的本地删除分支场景方法4. 恢复

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

Window Server2016加入AD域的方法步骤

《WindowServer2016加入AD域的方法步骤》:本文主要介绍WindowServer2016加入AD域的方法步骤,包括配置DNS、检测ping通、更改计算机域、输入账号密码、重启服务... 目录一、 准备条件二、配置ServerB加入ServerA的AD域(test.ly)三、查看加入AD域后的变

Window Server2016 AD域的创建的方法步骤

《WindowServer2016AD域的创建的方法步骤》本文主要介绍了WindowServer2016AD域的创建的方法步骤,文中通过图文介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、准备条件二、在ServerA服务器中常见AD域管理器:三、创建AD域,域地址为“test.ly”

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

Python中使用defaultdict和Counter的方法

《Python中使用defaultdict和Counter的方法》本文深入探讨了Python中的两个强大工具——defaultdict和Counter,并详细介绍了它们的工作原理、应用场景以及在实际编... 目录引言defaultdict的深入应用什么是defaultdictdefaultdict的工作原理

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写