esp32-s3部署yolox_nano进行目标检测

2023-11-30 17:36

本文主要是介绍esp32-s3部署yolox_nano进行目标检测,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

ESP32-S3部署yolox_nano进行目标检测

      • 一、生成模型部署项目
        • 01 环境
        • 02 配置TVM包
        • 03 模型量化
          • 3.1预处理
          • 3.2 量化
        • 04 生成项目
      • 二、烧录程序

手上的是ESP32-S3-WROOM-1 N8R8芯片,整个链路跑通了,但是识别速度太慢了,20秒一张图,所以暂时还没打算进一步优化程序。
在这里插入图片描述

一、生成模型部署项目

官方指导文件:使用TVM自动生成模型部署项目

先下载onnx模型:yolox_nano.onnx,将下载好的yolox_nano.onnx放置在esp-dl/tutorial/evm_example路径下。

01 环境
  • ESP-IDF 5.0
  • 虚拟机Ubuntu 20.04
  • python环境
    在这里插入图片描述
02 配置TVM包

按官方文档下载完包后,设置环境变量PYTHONPATH

sudo vim ~/.bashrc
# 在文件的最后添加以下行,其中path-to-esp-dl更换为你的文件路径
export PYTHONPATH='$PYTHONPATH:/path-to-esp-dl/tools/tvm/python'
03 模型量化
3.1预处理
~/esp-dl $ cd tutorial/tvm_example
~/esp-dl/tutorial/tvm_example $ python -m onnxruntime.quantization.preprocess --input yolox_nano.onnx --output yolox_nano_opt.onnx
3.2 量化
  • 生成校准数据
import numpy as np
import cv2
import os# 图片路径
path = 'esp-dl/img/calib'# 读取图片并将它们保存为numpy数组
images = []
for filename in os.listdir(path):img = cv2.imread(os.path.join(path, filename))img_resized = cv2.resize(img, (416, 416))img_array = np.transpose(img_resized, (2, 0, 1))img_array = img_array / 255.0if img_array is not None:images.append(img_array)print(filename)# 将numpy数组保存为npy文件
np.save('esp-dl/tutorial/tvm_example/calib_416x416.npy', images)
  • 生成模型输入
import numpy as np
import cv2
import ospath = 'esp-dl/img/input.jpg'img = cv2.imread(path)
img_resized = cv2.resize(img, (416, 416))
img_array = np.transpose(img_resized, (2, 0, 1))
img_array = img_array / 255.0
images = [img_array]np.save('esp-dl/tutorial/tvm_example/input_416x416.npy', images)
  • 生成量化后的模型
~/esp-dl/tutorial/tvm_example $ python ../../tools/tvm/esp_quantize_onnx.py --input_model yolox_nano_opt.onnx --output_model yolox_nano_quant.onnx --calibrate_dataset calib_416x416.npy
Collecting tensor data and making histogram ...
Finding optimal threshold for each tensor using entropy algorithm ...
Number of tensors : 365
Number of histogram bins : 128 (The number may increase depends on the data it collects)
Number of quantized bins : 128
WARNING:root:Please use QuantFormat.QDQ for activation type QInt8 and weight type QInt8. Or it will lead to bad performance on x64.
04 生成项目
~/esp-dl/tutorial/tvm_example $ python ../../tools/tvm/export_onnx_model.py --model_path yolox_nano_quant.onnx --img_path input_416x416.npy --target_chip esp32s3 --out_path "." --template_path "../../tools/tvm/template_project_for_model/"
Model Information:
------------------
Input Name: images
Input Shape: (1, 3, 416, 416)
Input DType: float
Output Name: output
Output Shape: (1, 3549, 85)
Output DType: float
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: nn.max_pool2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: image.resize2d
[17:21:47] /home/gansichen/Workspace/projects/local/framework/tvm/src/relay/transforms/convert_layout.cc:99: Warning: Desired layout(s) not specified for op: image.resize2d
esp_dl_library_path: /home/zymidea/Desktop/esp32-cam/esp-dl
generated project in: ./new_project

二、烧录程序

烧录用的windows系统,将虚拟机中生成的new_project文件夹复制到PC端,打开ESP-IDF CMD

cd new_preject
idf.py set-target esp32s3
idf.py flash monitor

这是按照官方的教程进行烧录,但是模型太大会出现内存溢出esp32-template-project.elf section '.dram0.bss' will not fit in region 'dram0_0_seg' region 'dram0_0_seg' overflowed by 2141320 bytes

~/new_project $ idf.py size-components
...
Total sizes:                                                                               
Used static IRAM:   61042 bytes ( 301198 remain, 16.9% used)                                    .text size:   60015 bytes                                                                  .vectors size:    1027 bytes                                                         
Used stat D/IRAM: 2442376 bytes (-2096520 remain, 706.2% used) Overflow detected!              .data size:   11088 bytes                                                                  .bss  size: 2431288 bytes                                                             
Used Flash size : 3729295 bytes                                                                .text     :  473467 bytes                                                                  .rodata   : 3255572 bytes                                                             
Total image size: 3801425 bytes (.bin may be padded larger) 

在这里插入图片描述

找到new_project/build/project_description.jsonlibtvm_model.a静态文件的源代码。
在这里插入图片描述

官方指导片外RAM

需要调整的是将模型的权重文件保存到flash并将模型的输出存放在PSRAM,操作如下

// 打开/new_project/components/tvm_model/model/codegen/host/src/default_lib0.c// 代码最前面
// 增加一个头文件
#include "E:/Espressif/frameworks/esp-idf-v5.0.4/components/esp_common/include/esp_attr.h"// static struct global_const_workspace 将static改为const
const struct global_const_workspace// 代码最后面
// __attribute__((section(".bss.noinit.tvm"), aligned(16))) 将这句话注释掉
static EXT_RAM_BSS_ATTR uint8_t global_workspace[2422784]; // 增加宏EXT_RAM_BSS_ATTR
// 打开/new_project/main/output_data.h
const static _SECTION_ATTR_IMPL(".ext_ram.bss", __COUNTER__) __attribute__((aligned(16))) float output_data[42588] // 指定该数组存放到外部RAM的.ext_ram.bss段
~/new_project $ idf.py menuconfig

在这里插入图片描述
在这里插入图片描述
修改完毕S键保存,Esc键退出。

修改/new_project/partitions.csv分区表中的factory的大小,原本的3000多K存储模型权重不够,将其增大点,三个区的Offset都清空,生成过程它会自动匹配。

在这里插入图片描述

所有的修改完毕后再重新再看一下各个RAM的使用情况

~/new_project $ idf.py size-components
...
Used static IRAM:   61042 bytes ( 301198 remain, 16.9% used).text size:   60015 bytes.vectors size:    1027 bytes
Used stat D/IRAM:   19592 bytes ( 326264 remain, 5.7% used) .data size:   11088 bytes.bss  size:    8504 bytes 
Used Flash size : 3729203 bytes                                                                .text     :  473455 bytes                                                                  .rodata   : 3255492 bytes                                                             
Total image size: 3801333 bytes (.bin may be padded larger) 
...

在这里插入图片描述

最后重新烧录就能运行成功了。

~/new_project $ idf.py flash monitor

在这里插入图片描述

这篇关于esp32-s3部署yolox_nano进行目标检测的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437913

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

使用Python进行文件读写操作的基本方法

《使用Python进行文件读写操作的基本方法》今天的内容来介绍Python中进行文件读写操作的方法,这在学习Python时是必不可少的技术点,希望可以帮助到正在学习python的小伙伴,以下是Pyth... 目录一、文件读取:二、文件写入:三、文件追加:四、文件读写的二进制模式:五、使用 json 模块读写

k8s部署MongDB全过程

《k8s部署MongDB全过程》文章介绍了如何在Kubernetes集群中部署MongoDB,包括环境准备、创建Secret、创建服务和Deployment,并通过Robo3T工具测试连接... 目录一、环境准备1.1 环境说明1.2 创建 namespace1.3 创建mongdb账号/密码二、创建Sec

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

使用zabbix进行监控网络设备流量

《使用zabbix进行监控网络设备流量》这篇文章主要为大家详细介绍了如何使用zabbix进行监控网络设备流量,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录安装zabbix配置ENSP环境配置zabbix实行监控交换机测试一台liunx服务器,这里使用的为Ubuntu22.04(

将Python应用部署到生产环境的小技巧分享

《将Python应用部署到生产环境的小技巧分享》文章主要讲述了在将Python应用程序部署到生产环境之前,需要进行的准备工作和最佳实践,包括心态调整、代码审查、测试覆盖率提升、配置文件优化、日志记录完... 目录部署前夜:从开发到生产的心理准备与检查清单环境搭建:打造稳固的应用运行平台自动化流水线:让部署像