从0开始做垂直O2O个性化推荐-以58到家美甲为例

2023-11-30 16:08

本文主要是介绍从0开始做垂直O2O个性化推荐-以58到家美甲为例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从0开始做垂直O2O个性化推荐

上次以58转转为例,介绍了如何从0开始如何做互联网推荐产品(回复“推荐”阅读),58转转的宝贝为闲置物品,品类多种多样,要做统一的宝贝画像比较难,而分类别做宝贝画像成本又非常高,所以更多的是进行用户画像、分类预测推荐、协同过滤推荐等个性化推荐。

有些同学反馈,他们的产品是垂直类的O2O产品,分类单一,可以简单的实现宝贝画像,这类垂直O2O产品怎么从零开始做个性化推荐呢?这是本文要讨论的问题

一、58到家美甲简介

58到家有三大自营业务“家政”“美甲”和“速运” ,美甲能够实现“足不出户,享品质服务,做美丽女人”,目前提供上门美甲、修复与卸甲、美睫、化妆等服务。

http://bj.daojia.com/liren/

二、从0开始设计垂直O2O推荐框架

(1)列表页推荐:用户既然进入到了美甲,成交意愿是非常强烈的,首页的推荐至关重要

(2)宝贝详情页推荐:买了还买,看了还看类的关联宝贝推荐

(3)下单成功页推荐:既然下单了某个甲样,可能会喜欢相近的甲样哟

(4)召回推荐:在用户退出系统后,通过RFM模型做优惠券推送或者消息推送做客户挽留与召回

RFM模型:根据用户最近一次购买时间Recency,最近一段时间的购买频率Frequency,最近一段时间的购买金额Monetary,加权得到的一个代表用户成交意愿的一个分值。

三、甲样列表页推荐详细流程

(1)用户点击进入甲样列表页

(2)画像用户的消费能力

(3)抽取购买、收藏、喜欢、浏览的历史数据

(4)根据历史数据,对所有甲样进行打分,综合一些产品策略,推荐出首屏的4个甲样,例如:

(5)如果用户下单,以被下单的相似甲样做推荐

(6)如果用户跳出,可以根据信用评级、消费等级做优惠券召回推荐

四、与业务紧密结合的策略规则

推荐系统并不是一个单纯的算法问题,而是一个与产品、工程架构都相关的综合性问题,不同的业务会有不同的产品策略,这些是在做推荐时需要考虑的,以美甲为例,需要考虑:

(1)排序前2名要推荐最符合用户消费能力的甲样(例如“价格小于150”)

(2)被推荐的4个甲样要覆盖尽可能多的消费区间(例如“两个甲样价格小于150,两个甲样价格大于150”)

(3)被推荐的4个甲样要覆盖最火的产品、旧产品、新产品(例如“1个爆品,2个旧加油,1个新甲样”)

(4)垂直相邻的甲样,颜色不同(为了视觉体验)

(5)水平相邻的甲样,颜色不同(原因同上)

(6)垂直相邻的甲样,款式不同(为了视觉体验,以及产品覆盖度、受众度)

(7)水平相邻的甲样,款式不同(原因同上)

(8)…

五、如何利用甲样画像与用户购买、收藏、喜欢、浏览的历史数据对所有甲样进行打分?

【宝贝画像】

垂直O2O的相对比较容易做宝贝画像,宝贝品类比较单一(甲样),宝贝的品种也比较少(几千几万种甲样),熟悉业务的人可以对宝贝进行画像(不需要复杂的机器学习方法),以甲样为例,可以抽象出:

款式

颜色

风格

场景

图案

其他

等多个核心属性

【核心属性赋值,标签化】

宝贝画像完毕之后,对于每一个核心属性,可以进行赋值,实施标签化

款式:纯色,法式,渐变,彩绘,贴饰

颜色:红色,粉色,蓝色,白色

风格:简约,甜美,复古,可爱

场景:派对,旅行,约会,晚宴,夜店

图案:卡通,小碎花,动物,桃心,五角星

【抽取用户历史行为】

抽取购买、收藏、喜欢、浏览的历史行为数据,得到一些甲样ID集合set<bb-id>

【查询所有历史行为甲样ID的画像属性,对标签进行频率统计】

用户U历史行为某买了甲样1:bb-id1,收藏了甲样2:bb-id2

从库中查询出所有甲样的详细属性

bb-id1:彩绘,红色,可爱,夜店,桃心

bb-id2:彩绘,粉色,可爱,夜店,桃心

对标签进行统计

款式:{彩绘:2}

颜色:{红色:1,粉色:1}

风格:{可爱:2}

场景:{夜店:2}

图案:{桃心:2}

【根据标签统计,量化对标签的喜爱程度】

例如,标签量化打分公式可以为:score=同类标签出现频率

那么,对于“款式”这个属性,依据上述统计,各标签的打分是:

纯色=0分,法式=0分,渐变=0分,彩绘=1分,晕染=0分,贴饰=0分(假设只有5种款式)

同理,对于“颜色”这个属性,依据上述统计,各标签的打分是:

红色=0.5分,粉色=0.5分,蓝色=0分,白色=0分(假设只有4种颜色)

这个打分是一个简单举例,实际上的打分公式会复杂很多(例如购买与收藏贡献的分值不一样)

【根据上述量化标签,量化用户对每个甲样的喜爱程度】

例如,对于一个甲样X{纯色,红色,简约,夜店,卡通},可以计算出用户对它的喜爱分值为

socre-X = 0(纯色) + 0.5(红色) + 0(简约) + 1(夜店) + 0(卡通) = 1.5分

这个打分是一个简单举例,实际上打分公式会复杂很多(例如各个属性的权重是不一样的)

【对所有甲样计算分值,排序】

【从高到底进行甲样推荐】

推荐的过程中注意,4款甲样要符合第四个大步骤中提到的产品策略(要覆盖各个价格范围,相邻颜色与样式不同等)

【个性化推荐完成】

好了,暂时先到这里,上面的思路绝对是能落地的,希望58到家美甲的推荐,对其他刚开始做垂直O2O互联网产品的同学有帮助。

注:本文是58到家推荐负责人@王洪权 做58到家美甲推荐技术交流时,@58沈剑 做的纪要,内容“略”有修改。

==【完】==

回【拍卖】互联网广告之拍卖理论

回【广告】一分钟读懂互联网广告竞价策略

回【kkkk】3分钟懂K-means聚类算法(附源码)

回【回归】3分钟懂线性回归预测算法(附源码)

回【宝马】如何在微信刷出宝马广告

回【红包】抢红包统计学(技术贴,知道为啥自己越抢越穷了吧)

回【推荐】从0开始做互联网推荐

回大于10的整数,返回随机好文(猜猜怎么实现的)

每个字都是作者码的,帮忙转发一下嘛。

这篇关于从0开始做垂直O2O个性化推荐-以58到家美甲为例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437669

相关文章

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

防近视护眼台灯什么牌子好?五款防近视效果好的护眼台灯推荐

在家里,灯具是属于离不开的家具,每个大大小小的地方都需要的照亮,所以一盏好灯是必不可少的,每个发挥着作用。而护眼台灯就起了一个保护眼睛,预防近视的作用。可以保护我们在学习,阅读的时候提供一个合适的光线环境,保护我们的眼睛。防近视护眼台灯什么牌子好?那我们怎么选择一个优秀的护眼台灯也是很重要,才能起到最大的护眼效果。下面五款防近视效果好的护眼台灯推荐: 一:六个推荐防近视效果好的护眼台灯的

智能交通(二)——Spinger特刊推荐

特刊征稿 01  期刊名称: Autonomous Intelligent Systems  特刊名称: Understanding the Policy Shift  with the Digital Twins in Smart  Transportation and Mobility 截止时间: 开放提交:2024年1月20日 提交截止日

lvgl8.3.6 控件垂直布局 label控件在image控件的下方显示

在使用 LVGL 8.3.6 创建一个垂直布局,其中 label 控件位于 image 控件下方,你可以使用 lv_obj_set_flex_flow 来设置布局为垂直,并确保 label 控件在 image 控件后添加。这里是如何步骤性地实现它的一个基本示例: 创建父容器:首先创建一个容器对象,该对象将作为布局的基础。设置容器为垂直布局:使用 lv_obj_set_flex_flow 设置容器

开放式耳机好用?平价开放式耳机推荐?四款开放式的蓝牙耳机推荐

开放式耳机好用吗?有平价些的开放式耳机推荐吗?那这两个问题的回答当然是肯定的。 首先开放式耳机好不好用取决于对耳机的需求,因为开放式耳机其实是比较适用于需要注意周围环境、需要‌长时间佩戴舒适以及需要频繁与人交流的场景中,在这些场景下使用开放式耳机的话就会比较有优势。就例如跑步骑行健身等运动的时候,能够兼得佩戴舒适度的同时,增加一定的安全性;还有在办公学习的时候,会很适合长时间佩戴,能够方便和

如何打造个性化大学生线上聊天交友系统?Java SpringBoot Vue教程,2025最新设计思路

✍✍计算机编程指导师 ⭐⭐个人介绍:自己非常喜欢研究技术问题!专业做Java、Python、微信小程序、安卓、大数据、爬虫、Golang、大屏等实战项目。 ⛽⛽实战项目:有源码或者技术上的问题欢迎在评论区一起讨论交流! ⚡⚡ Java实战 | SpringBoot/SSM Python实战项目 | Django 微信小程序/安卓实战项目 大数据实战项目 ⚡⚡文末获取源码 文章目录

CCF推荐C类会议和期刊总结(计算机网络领域)

CCF推荐C类会议和期刊总结(计算机网络领域) 在计算机网络领域,中国计算机学会(CCF)推荐的C类会议和期刊为研究者提供了广泛的学术交流平台。以下是对所有C类会议和期刊的总结,包括全称、出版社、dblp文献网址以及所属领域。 目录 CCF推荐C类会议和期刊总结(计算机网络领域) C类期刊 1. Ad Hoc Networks 2. CC 3. TNSM 4. IET Com

推荐练习键盘盲打的网站

对于初学者来说,以下是一些推荐的在线打字练习网站: 打字侠:这是一个专业的在线打字练习平台,提供科学合理的课程设置和个性化学习计划,适合各个水平的用户。它还提供实时反馈和数据分析,帮助你提升打字速度和准确度。 dazidazi.com:这个网站提供了基础的打字练习,适合初学者从零开始学习打字。 Type.fun打字星球:提供了丰富的盲打课程和科学的打字课程设计,还有诗词歌赋、经典名著等多样

Java Web应用程序的推荐目录结构

以前没有用过maven管理过项目的依赖,最后使用上了maven,发现通过不能方式建立出来的web应用程序目录结构基本都不一样,既然每次都要到网上搜索如何建立maven管理的Web应用程序,不如自己找百度谷歌一下。 找了半天 ,感觉比较好的maven管理的web应用程序目录结构是这个: ├── pom.xml└── src├── main│ ├── java│ │ └── myg