linux dump_backtrace

2023-11-30 12:58
文章标签 linux dump backtrace

本文主要是介绍linux dump_backtrace,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

linux oops产生过程之dump_backtrace

 什么是Oops?从语言学的角度说,Oops应该是一个拟声词。当出了点小事故,或者做了比较尴尬的事之后,你可以说"Oops",翻译成中国话就叫做“哎呦”。“哎呦,对不起,对不起,我真不是故意打碎您的杯子的”。看,Oops就是这个意思。

在Linux内核开发中的Oops是什么呢?其实,它和上面的解释也没什么本质的差别,只不过说话的主角变成了Linux。当某些比较致命的问题出现时,我们的Linux内核也会抱歉的对我们说:“哎呦(Oops),对不起,我把事情搞砸了”。Linux内核在发生kernel panic时会打印出Oops信息,把目前的寄存器状态、堆栈内容、以及完整的Call trace都show给我们看,这样就可以帮助我们定位错误。

那么linux内核的call trace是如何实现的呢?

简单的概述,譬如有一个这样的调用关系:A-------->B-------->C,即A调用B,B调用C,而程序就正是在C函数中执行出现了致命错误,则可以通过此时的内核堆栈,通过堆栈的回朔来找出调用C函数的是B函数,而调用B函数的正是A函数。

大致的方法就是:C函数执行出错时的fp寄存器(称为栈帧寄存器),指向当前函数所在的堆栈帧,而该堆栈帧又是有一定的组织格式的(下面会详细描述该结构),所以可以通过该堆栈帧来找到saved 在栈帧中的lr寄存器(即为C函数的调用者,也即C函数在B函数中的返回地址)和saved 在栈帧中的pc寄存器(该pc寄存器通过简单的修正,就可以确定当前出错时,所在的函数的开始地址),再通过saved 在栈帧中的fp寄存器就可以回朔到调用C函数的B函数所在的堆栈帧,从而可以循环这个过程,直到当栈帧中的fp寄存器为0,说明不能继续回朔了。

linux内核中的堆栈回朔,是跟架构相关的,而linux, arm的堆栈回朔函数为:arch/arm/kernel/traps.c

 

[cpp] view plain copy

  1. static void dump_backtrace(struct pt_regs *regs, struct task_struct *tsk)  
  2. {  
  3.     unsigned int fp, mode;  
  4.     int ok = 1;  
  5.   
  6.     printk("Backtrace: ");  
  7.   
  8.     if (!tsk)  
  9.         tsk = current;  
  10.     if (regs) {  
  11.         fp = regs->ARM_fp;  
  12.         mode = processor_mode(regs);//获取处理器的模式  
  13.     } else if (tsk != current) {  
  14.         fp = thread_saved_fp(tsk);//如果不是当前任务,  
  15.         mode = 0x10;  
  16.     } else {  
  17.         asm("mov %0, fp" : "=r" (fp) : : "cc");//linuxc语言中内嵌汇编  
  18.         mode = 0x10;//用户模式  
  19.     }  
  20.   
  21.     if (!fp) {  
  22.         printk("no frame pointer");  
  23.         ok = 0;  
  24.     } else if (verify_stack(fp)) {  
  25.         printk("invalid frame pointer 0x%08x", fp);  
  26.         ok = 0;  
  27.     } else if (fp < (unsigned long)end_of_stack(tsk))  
  28.         printk("frame pointer underflow");  
  29.     printk("\n");  
  30.   
  31.     if (ok)  
  32.         c_backtrace(fp, mode);//r0对应的栈帧指针,r1对应处理器模式  
  33. }  

c_backtrace函数在如下文件中:arch/arm/lib/backtrace.S

 

在详细讲述该函数之前,我需要介绍下,栈帧的组织格式或构成:

如上所述,r0-r3都是可选的,是用于传递函数前面四个参数。

r4-r10也是可选的,是编译器根据具体情况(使用局部变量的数目),来决定使用那个寄存器,就保存那些寄存器的。

上图对应如下的stack frame layout:

/*
 * Stack frame layout:(地址从低到高)
 *             optionally saved caller registers (r4 - r10)
 *             saved fp
 *             saved sp
 *             saved lr
 *    frame => saved pc
 *             optionally saved arguments (r0 - r3)
 * saved sp => <next word>
 */

所以为了都遵循以上的栈帧结构,每个函数的反汇编代码,都是以如下的样子展开的:
 * Functions start with the following code sequence:
 *                  mov   ip, sp
 *                  stmfd sp!, {r0 - r3} (optional)
 * corrected pc =>  stmfd sp!, {..., fp, ip, lr, pc}
 */
下面摘一个实际的反汇编的子程序的列子如下(如下高亮部分就是保存栈帧结构,本列中,被未保存r0-r3):

现在开始对c_backtrace函数展开详细的说明

 

[cpp] view plain copy

  1. @ fp is 0 or stack frame  
  2.   
  3. #define frame   r4  
  4. #define sv_fp   r5  
  5. #define sv_pc   r6  
  6. #define mask    r7  
  7. #define offset  r8  
  8.   
  9. ENTRY(c_backtrace)  
  10.   
  11. #if !defined(CONFIG_FRAME_POINTER) || !defined(CONFIG_PRINTK)  
  12.         mov pc, lr  
  13. ENDPROC(c_backtrace)  
  14. #else  
  15.         stmfd   sp!, {r4 - r8, lr}  @ Save an extra register so we have a location...  
  16.         movs    frame, r0       @ if frame pointer is zero,将异常产生函数的fp寄存器值赋值给frame  
  17.         beq no_frame        @ we have no stack frames  
  18.   
  19.         tst r1, #0x10       @ 26 or 32-bit mode?  
  20.  ARM(       moveq   mask, #0xfc000003   )  
  21.  THUMB(     moveq   mask, #0xfc000000   )  
  22.  THUMB(     orreq   mask, #0x03     )  
  23.         movne   mask, #0        @ mask for 32-bit//mask一般都为0x00  
  24.   
  25. 1:      stmfd   sp!, {pc}       @ calculate offset of PC stored  
  26.         ldr r0, [sp], #4        @ by stmfd for this CPU  
  27.         adr r1, 1b  
  28.         sub offset, r0, r1         //该段代码就是计算stm/str指令在装载pc值时,pc跟当前实际执行指令的偏移量。可能值为:8,12等  
  29.                            //除了stm和str指令外,所有其他指令在装载pc值时,pc跟当前实际执行指令的偏移量都固定为8的。  
  30. /* 
  31.  * Stack frame layout: 
  32.  *             optionally saved caller registers (r4 - r10) 
  33.  *             saved fp 
  34.  *             saved sp 
  35.  *             saved lr 
  36.  *    frame => saved pc 
  37.  *             optionally saved arguments (r0 - r3) 
  38.  * saved sp => <next word> 
  39.  * 
  40.  * Functions start with the following code sequence: 
  41.  *                  mov   ip, sp 
  42.  *                  stmfd sp!, {r0 - r3} (optional) 
  43.  * corrected pc =>  stmfd sp!, {..., fp, ip, lr, pc} 
  44.  */  
  45. for_each_frame: tst frame, mask     @ Check for address exceptions  
  46.         bne no_frame  
  47.   
  48. 1001:       ldr sv_pc, [frame, #0]  @ get saved pc  
  49. 1002:       ldr sv_fp, [frame, #-12]    @ get saved fp  该fp值是异常产生时函数的上一级函数(即调用者)的栈帧寄存器。  
  50.   
  51.         sub sv_pc, sv_pc, offset    @ Correct PC for prefetching  
  52.         bic sv_pc, sv_pc, mask  @ mask PC/LR for the mode//修改保存的pc值,使其指向被装载时的指令的地址,如上面注释中的corrected pc  
  53.   
  54. 1003:       ldr r2, [sv_pc, #-4]    @ if stmfd sp!, {args} exists,//该段语句判断函数的反汇编中,是否存在stmfd sp!, {r0 - r3} (optional)指令  
  55.         ldr r3, .Ldsi+4     @ adjust saved 'pc' back one  
  56.         teq r3, r2, lsr #10     @ instruction  
  57.         subne   r0, sv_pc, #4       @ allow for mov  //如果不存在可选指令:stmfd sp!, {r0 - r3},则为了将sv_pc值回退指向本函数的第一条指令,则需要减1*4=4  
  58.         subeq   r0, sv_pc, #8       @ allow for mov + stmia//如果存在可选指令: stmfd sp!, {r0 - r3},则如果要将sv_pc值回退指向本函数的第一条指令,则需要减2*4=8  
  59.         //至此r0指向了本函数的第一条指令,即函数的最开头,即为该函数指针的值  
  60.         ldr r1, [frame, #-4]    @ get saved lr  
  61.         mov r2, frame  
  62.         bic r1, r1, mask        @ mask PC/LR for the mode  
  63.         @void dump_backtrace_entry(unsigned long where, unsigned long from, unsigned long frame)  
  64.         @                       (             sv_pc, sv_lr                     , frame                    )  
  65.         @至此,r1指向本函数的返回地址,即该函数在调用者中的偏移量,r2执行本函数的栈帧  
  66.         bl  dump_backtrace_entry //打印本函数的名字,在上级函数中的偏移量等内容  
  67.         ldr r1, [sv_pc, #-4]    @ if stmfd sp!, {args} exists,  
  68.         ldr r3, .Ldsi+4     //该段代码,判断如果 可选指令:stmfd sp!, {r0 - r3}存在,则将r0 - r3打印出来{..., fp, ip, lr, pc}    
  69.         teq r3, r1, lsr #10  
  70.         ldreq   r0, [frame, #-8]    @ get sp  
  71.         subeq   r0, r0, #4      @ point at the last arg  
  72.         bleq    .Ldumpstm       @ dump saved registers //打印{..., fp, ip, lr, pc}的内容  
  73.   
  74. 1004:       ldr r1, [sv_pc, #0]     @ if stmfd sp!, {..., fp, ip, lr, pc}  
  75.         ldr r3, .Ldsi       @ instruction exists,  
  76.         teq r3, r1, lsr #10  
  77.         subeq   r0, frame, #16  
  78.         bleq    .Ldumpstm       @ dump saved registers  
  79.   
  80.         teq sv_fp, #0       @ zero saved fp means ,由于fp已经为0,不能再继续回朔  
  81.         beq no_frame        @ no further frames  
  82.   
  83.         cmp sv_fp, frame        @ next frame must be 取上一级函数的栈帧值,做如上的相同处理。  
  84.         mov frame, sv_fp        @ above the current frame  
  85.         bhi for_each_frame  
  86.   
  87. 1006:       adr r0, .Lbad  
  88.         mov r1, frame  
  89.         bl  printk  
  90. no_frame:   ldmfd   sp!, {r4 - r8, pc}  
  91. ENDPROC(c_backtrace)  

 

以上的dump_backtrace_entry函数定义在文件中:arch/arm/kernel/traps.c

 

参数where即为当前函数的函数指针值,from即为该函数在调用者中的返回值,frame为当前函数的栈帧值

 

[cpp] view plain copy

  1. void dump_backtrace_entry(unsigned long where, unsigned long from, unsigned long frame)  
  2. {  
  3. #ifdef CONFIG_KALLSYMS  
  4.     printk("[<%08lx>] (%pS) from [<%08lx>] (%pS)\n", where, (void *)where, from, (void *)from);  
  5. #else  
  6.     printk("Function entered at [<%08lx>] from [<%08lx>]\n", where, from);  
  7. #endif  
  8.   
  9.     if (in_exception_text(where))  
  10.         dump_mem("""Exception stack", frame + 4, frame + 4 + sizeof(struct pt_regs));  
  11. }  


以上函数会打印出类似如下信息:

 

[ 4175.704664] Backtrace: 
0mS[ 4175.707415] [<bf14d314>] (MlmeSetTxRate+0x0/0x3b0 [mt7601Usta]) from [<bf14e3b8>] (MlmeNewTxRate+0x9c/0xb0 [mt7601Usta])
[ 4175.718186]  r6:000ab6d8 r5:db2ff000 r4:db45de78
cre[ 4175.723087] [<bf14e31c>] (MlmeNewTxRate+0x0/0xb0 [mt7601Usta]) from [<bf14ffd8>] (MlmeDynamicTxRateSwitching+0x81c/0x106c [mt7601Usta])
[ 4175.735172]  r7:db45de78 r6:db2ff000 r5:00000001 r4:db45e488
enO[ 4175.741092] [<bf14f7bc>] (MlmeDynamicTxRateSwitching+0x0/0x106c [mt7601Usta]) from [<bf10e244>] (MlmePeriodicExec+0x42c/0x8a0 [mt7601Usta])
n:f[ 4175.753828] [<bf10de18>] (MlmePeriodicExec+0x0/0x8a0 [mt7601Usta]) from [<bf139e1c>] (RtmpTimerQThread+0x168/0x1dc [mt7601Usta])
[ 4175.765332]  r8:db2ff2e8 r7:001803a9 r6:db2ff2e0 r5:db3bafcc r4:db2ff000
al[ 4175.772171] [<bf139cb4>] (RtmpTimerQThread+0x0/0x1dc [mt7601Usta]) from [<c0044e3c>] (kthread+0x98/0x9c)
[ 4175.781641] [<c0044da4>] (kthread+0x0/0x9c) from [<c002be38>] (do_exit+0x0/0x804)
[ 4175.789078]  r6:c002be38 r5:c0044da4 r4:ca0f3c60
[ 4175.793676] Code: e1a0c00d e92dd870 e24cb004 e24dd00c (e5d23001) 

这篇关于linux dump_backtrace的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/437115

相关文章

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

Linux使用dd命令来复制和转换数据的操作方法

《Linux使用dd命令来复制和转换数据的操作方法》Linux中的dd命令是一个功能强大的数据复制和转换实用程序,它以较低级别运行,通常用于创建可启动的USB驱动器、克隆磁盘和生成随机数据等任务,本文... 目录简介功能和能力语法常用选项示例用法基础用法创建可启动www.chinasem.cn的 USB 驱动

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Linux Mint Xia 22.1重磅发布: 重要更新一览

《LinuxMintXia22.1重磅发布:重要更新一览》Beta版LinuxMint“Xia”22.1发布,新版本基于Ubuntu24.04,内核版本为Linux6.8,这... linux Mint 22.1「Xia」正式发布啦!这次更新带来了诸多优化和改进,进一步巩固了 Mint 在 Linux 桌面

LinuxMint怎么安装? Linux Mint22下载安装图文教程

《LinuxMint怎么安装?LinuxMint22下载安装图文教程》LinuxMint22发布以后,有很多新功能,很多朋友想要下载并安装,该怎么操作呢?下面我们就来看看详细安装指南... linux Mint 是一款基于 Ubuntu 的流行发行版,凭借其现代、精致、易于使用的特性,深受小伙伴们所喜爱。对

什么是 Linux Mint? 适合初学者体验的桌面操作系统

《什么是LinuxMint?适合初学者体验的桌面操作系统》今天带你全面了解LinuxMint,包括它的历史、功能、版本以及独特亮点,话不多说,马上开始吧... linux Mint 是一款基于 Ubuntu 和 Debian 的知名发行版,它的用户体验非常友好,深受广大 Linux 爱好者和日常用户的青睐,

Linux(Centos7)安装Mysql/Redis/MinIO方式

《Linux(Centos7)安装Mysql/Redis/MinIO方式》文章总结:介绍了如何安装MySQL和Redis,以及如何配置它们为开机自启,还详细讲解了如何安装MinIO,包括配置Syste... 目录安装mysql安装Redis安装MinIO总结安装Mysql安装Redis搜索Red

Linux中Curl参数详解实践应用

《Linux中Curl参数详解实践应用》在现代网络开发和运维工作中,curl命令是一个不可或缺的工具,它是一个利用URL语法在命令行下工作的文件传输工具,支持多种协议,如HTTP、HTTPS、FTP等... 目录引言一、基础请求参数1. -X 或 --request2. -d 或 --data3. -H 或

Linux磁盘分区、格式化和挂载方式

《Linux磁盘分区、格式化和挂载方式》本文详细介绍了Linux系统中磁盘分区、格式化和挂载的基本操作步骤和命令,包括MBR和GPT分区表的区别、fdisk和gdisk命令的使用、常见的文件系统格式以... 目录一、磁盘分区表分类二、fdisk命令创建分区1、交互式的命令2、分区主分区3、创建扩展分区,然后

Linux中chmod权限设置方式

《Linux中chmod权限设置方式》本文介绍了Linux系统中文件和目录权限的设置方法,包括chmod、chown和chgrp命令的使用,以及权限模式和符号模式的详细说明,通过这些命令,用户可以灵活... 目录设置基本权限命令:chmod1、权限介绍2、chmod命令常见用法和示例3、文件权限详解4、ch