1 NLP分类之:FastText

2023-11-30 03:04
文章标签 分类 nlp fasttext

本文主要是介绍1 NLP分类之:FastText,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

0 数据

https://download.csdn.net/download/qq_28611929/88580520?spm=1001.2014.3001.5503

数据集合:0 NLP: 数据获取与EDA-CSDN博客

词嵌入向量文件: embedding_SougouNews.npz

词典文件:vocab.pkl

1 模型

基于fastText做词向量嵌入然后引入2-gram, 3-gram扩充,最后接入一个MLP即可;

fastText 是一个由 Facebook AI Research 实现的开源库,用于进行文本分类和词向量学习。它结合了传统的词袋模型和神经网络的优点,能够快速训练大规模的文本数据。

fastText 的主要特点包括:

1. 快速训练:fastText 使用了层次化 Softmax 和负采样等技术,大大加快了训练速度。

2. 子词嵌入:fastText 将单词表示为字符级别的 n-gram,并将其视为单词的子词。这样可以更好地处理未登录词和稀有词。

3. 文本分类:fastText 提供了一个简单而高效的文本分类接口,可以用于训练和预测多类别文本分类任务。

4. 多语言支持:fastText 支持多种语言,并且可以通过学习共享词向量来提高跨语言任务的性能。

需要注意的是,fastText 主要适用于文本分类任务,对于其他类型的自然语言处理任务(如命名实体识别、机器翻译等),可能需要使用其他模型或方法。

 

 2 代码

nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)
 

`nn.Embedding.from_pretrained` 是 PyTorch 中的一个函数,用于从预训练的词向量加载 Embedding 层的权重。

在使用 `nn.Embedding.from_pretrained` 时,你需要提供一个预训练的词向量矩阵作为参数,

freeze 参数: 指定是否冻结该层的权重。预训练的词向量可以是从其他模型(如 Word2Vec 或 GloVe)中得到的。

y = nn.Embedding.from_pretrained (x)

x输入:词的索引

y返回: 词向量

 

import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import pickle as pkl
from tqdm import tqdm
import time
from torch.utils.data import Datasetfrom datetime import timedelta
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from collections import defaultdict
from torch.optim import AdamWUNK, PAD = '<UNK>', '<PAD>'  # 未知字,padding符号
RANDOM_SEED = 2023file_path = "./data/online_shopping_10_cats.csv"
vocab_file = "./data/vocab.pkl"
emdedding_file = "./data/embedding_SougouNews.npz"
vocab = pkl.load(open(vocab_file, 'rb'))class MyDataSet(Dataset):def __init__(self, df, vocab,pad_size=None):self.data_info = dfself.data_info['review'] = self.data_info['review'].apply(lambda x:str(x).strip())self.data_info = self.data_info[['review','label']].valuesself.vocab = vocab self.pad_size = pad_sizeself.buckets = 250499  def biGramHash(self,sequence, t):t1 = sequence[t - 1] if t - 1 >= 0 else 0return (t1 * 14918087) % self.bucketsdef triGramHash(self,sequence, t):t1 = sequence[t - 1] if t - 1 >= 0 else 0t2 = sequence[t - 2] if t - 2 >= 0 else 0return (t2 * 14918087 * 18408749 + t1 * 14918087) % self.bucketsdef __getitem__(self, item):result = {}view, label = self.data_info[item]result['view'] = view.strip()result['label'] = torch.tensor(label,dtype=torch.long)token = [i for i in view.strip()]seq_len = len(token)# 填充if self.pad_size:if len(token) < self.pad_size:token.extend([PAD] * (self.pad_size - len(token)))else:token = token[:self.pad_size]seq_len = self.pad_sizeresult['seq_len'] = seq_len# 词表的转换words_line = []for word in token:words_line.append(self.vocab.get(word, self.vocab.get(UNK)))result['input_ids'] = torch.tensor(words_line, dtype=torch.long) # bigram = []trigram = []for i in range(self.pad_size):bigram.append(self.biGramHash(words_line, i))trigram.append(self.triGramHash(words_line, i))result['bigram'] = torch.tensor(bigram, dtype=torch.long)result['trigram'] = torch.tensor(trigram, dtype=torch.long)return resultdef __len__(self):return len(self.data_info)
df = pd.read_csv("./data/online_shopping_10_cats.csv")#myDataset[0]
df_train, df_test = train_test_split(df, test_size=0.1, random_state=RANDOM_SEED)
df_val, df_test = train_test_split(df_test, test_size=0.5, random_state=RANDOM_SEED)
df_train.shape, df_val.shape, df_test.shapedef create_data_loader(df,vocab,pad_size,batch_size=4):ds = MyDataSet(df,vocab,pad_size=pad_size)return DataLoader(ds,batch_size=batch_size)MAX_LEN = 256
BATCH_SIZE = 4
train_data_loader = create_data_loader(df_train,vocab,pad_size=MAX_LEN, batch_size=BATCH_SIZE)
val_data_loader = create_data_loader(df_val,vocab,pad_size=MAX_LEN, batch_size=BATCH_SIZE)
test_data_loader = create_data_loader(df_test,vocab,pad_size=MAX_LEN, batch_size=BATCH_SIZE)class Config(object):"""配置参数"""def __init__(self):self.model_name = 'FastText'self.embedding_pretrained = torch.tensor(np.load("./data/embedding_SougouNews.npz")["embeddings"].astype('float32'))  # 预训练词向量self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')   # 设备self.dropout = 0.5                                              # 随机失活self.require_improvement = 1000                                 # 若超过1000batch效果还没提升,则提前结束训练self.num_classes = 2                                            # 类别数self.n_vocab = 0                                                # 词表大小,在运行时赋值self.num_epochs = 20                                            # epoch数self.batch_size = 128                                           # mini-batch大小self.learning_rate = 1e-4                                       # 学习率self.embed = self.embedding_pretrained.size(1)\if self.embedding_pretrained is not None else 300           # 字向量维度self.hidden_size = 256                                          # 隐藏层大小self.n_gram_vocab = 250499                                      # ngram 词表大小class Model(nn.Module):def __init__(self, config):super(Model, self).__init__()if config.embedding_pretrained is not None:self.embedding = nn.Embedding.from_pretrained(config.embedding_pretrained, freeze=False)else:self.embedding = nn.Embedding(config.n_vocab, config.embed, padding_idx=config.n_vocab - 1)self.embedding_ngram2 = nn.Embedding(config.n_gram_vocab, config.embed)self.embedding_ngram3 = nn.Embedding(config.n_gram_vocab, config.embed)self.dropout = nn.Dropout(config.dropout)self.fc1 = nn.Linear(config.embed * 3, config.hidden_size)# self.dropout2 = nn.Dropout(config.dropout)self.fc2 = nn.Linear(config.hidden_size, config.num_classes)def forward(self, x):out_word = self.embedding(x['input_ids'])out_bigram = self.embedding_ngram2(x['bigram'])out_trigram = self.embedding_ngram3(x['trigram'])out = torch.cat((out_word, out_bigram, out_trigram), -1)out = out.mean(dim=1)out = self.dropout(out)out = self.fc1(out)out = F.relu(out)out = self.fc2(out)return outconfig = Config()
model = Model(config)device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = model.to(device)EPOCHS = 5 # 训练轮数
optimizer = AdamW(model.parameters(),lr=2e-4)
total_steps = len(train_data_loader) * EPOCHS
# schedule = get_linear_schedule_with_warmup(optimizer,num_warmup_steps=0,
#                                num_training_steps=total_steps)
loss_fn = nn.CrossEntropyLoss().to(device)def train_epoch(model,data_loader,loss_fn,device,n_exmaples,schedule=None):model = model.train()losses = []correct_predictions = 0for d in tqdm(data_loader):# input_ids = d['input_ids'].to(device)# attention_mask = d['attention_mask'].to(device)targets = d['label']#.to(device)outputs = model(d)_,preds = torch.max(outputs, dim=1)loss = loss_fn(outputs,targets)losses.append(loss.item())correct_predictions += torch.sum(preds==targets)loss.backward()nn.utils.clip_grad_norm_(model.parameters(), max_norm=1.0)optimizer.step()#scheduler.step()optimizer.zero_grad()return correct_predictions.double() / n_examples, np.mean(losses)def eval_model(model, data_loader, loss_fn, device, n_examples):model = model.eval() # 验证预测模式losses = []correct_predictions = 0with torch.no_grad():for d in data_loader:targets = d['label']#.to(device)outputs = model(d)_, preds = torch.max(outputs, dim=1)loss = loss_fn(outputs, targets)correct_predictions += torch.sum(preds == targets)losses.append(loss.item())return correct_predictions.double() / n_examples, np.mean(losses)# train model
EPOCHS = 5
history = defaultdict(list) # 记录10轮loss和acc
best_accuracy = 0for epoch in range(EPOCHS):print(f'Epoch {epoch + 1}/{EPOCHS}')print('-' * 10)train_acc, train_loss = train_epoch(model,train_data_loader,loss_fn,optimizer,device,len(df_train))print(f'Train loss {train_loss} accuracy {train_acc}')val_acc, val_loss = eval_model(model,val_data_loader,loss_fn,device,len(df_val))print(f'Val   loss {val_loss} accuracy {val_acc}')print()history['train_acc'].append(train_acc)history['train_loss'].append(train_loss)history['val_acc'].append(val_acc)history['val_loss'].append(val_loss)if val_acc > best_accuracy:torch.save(model.state_dict(), 'best_model_state.bin')best_accuracy = val_acc

备注: CPU训练模型很慢啊!!!

这篇关于1 NLP分类之:FastText的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/435387

相关文章

C#使用DeepSeek API实现自然语言处理,文本分类和情感分析

《C#使用DeepSeekAPI实现自然语言处理,文本分类和情感分析》在C#中使用DeepSeekAPI可以实现多种功能,例如自然语言处理、文本分类、情感分析等,本文主要为大家介绍了具体实现步骤,... 目录准备工作文本生成文本分类问答系统代码生成翻译功能文本摘要文本校对图像描述生成总结在C#中使用Deep

Python实现NLP的完整流程介绍

《Python实现NLP的完整流程介绍》这篇文章主要为大家详细介绍了Python实现NLP的完整流程,文中的示例代码讲解详细,具有一定的借鉴价值,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 编程安装和导入必要的库2. 文本数据准备3. 文本预处理3.1 小写化3.2 分词(Tokenizatio

基于人工智能的图像分类系统

目录 引言项目背景环境准备 硬件要求软件安装与配置系统设计 系统架构关键技术代码示例 数据预处理模型训练模型预测应用场景结论 1. 引言 图像分类是计算机视觉中的一个重要任务,目标是自动识别图像中的对象类别。通过卷积神经网络(CNN)等深度学习技术,我们可以构建高效的图像分类系统,广泛应用于自动驾驶、医疗影像诊断、监控分析等领域。本文将介绍如何构建一个基于人工智能的图像分类系统,包括环境

认识、理解、分类——acm之搜索

普通搜索方法有两种:1、广度优先搜索;2、深度优先搜索; 更多搜索方法: 3、双向广度优先搜索; 4、启发式搜索(包括A*算法等); 搜索通常会用到的知识点:状态压缩(位压缩,利用hash思想压缩)。

用Pytho解决分类问题_DBSCAN聚类算法模板

一:DBSCAN聚类算法的介绍 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种基于密度的聚类算法,DBSCAN算法的核心思想是将具有足够高密度的区域划分为簇,并能够在具有噪声的空间数据库中发现任意形状的簇。 DBSCAN算法的主要特点包括: 1. 基于密度的聚类:DBSCAN算法通过识别被低密

PMP–一、二、三模–分类–14.敏捷–技巧–看板面板与燃尽图燃起图

文章目录 技巧一模14.敏捷--方法--看板(类似卡片)1、 [单选] 根据项目的特点,项目经理建议选择一种敏捷方法,该方法限制团队成员在任何给定时间执行的任务数。此方法还允许团队提高工作过程中问题和瓶颈的可见性。项目经理建议采用以下哪种方法? 易错14.敏捷--精益、敏捷、看板(类似卡片)--敏捷、精益和看板方法共同的重点在于交付价值、尊重人、减少浪费、透明化、适应变更以及持续改善等方面。

【python计算机视觉编程——8.图像内容分类】

python计算机视觉编程——8.图像内容分类 8.图像内容分类8.1 K邻近分类法(KNN)8.1.1 一个简单的二维示例8.1.2 用稠密SIFT作为图像特征8.1.3 图像分类:手势识别 8.2贝叶斯分类器用PCA降维 8.3 支持向量机8.3.2 再论手势识别 8.4 光学字符识别8.4.2 选取特征8.4.3 多类支持向量机8.4.4 提取单元格并识别字符8.4.5 图像校正

PMP–一、二、三模–分类–14.敏捷–技巧–原型MVP

文章目录 技巧一模14.敏捷--原型法--项目生命周期--迭代型生命周期,通过连续的原型或概念验证来改进产品或成果。每个新的原型都能带来新的干系人新的反馈和团队见解。题目中明确提到需要反馈,因此原型法比较好用。23、 [单选] 一个敏捷团队的任务是开发一款机器人。项目经理希望确保在机器人被实际建造之前,团队能够收到关于需求的早期反馈并相应地调整设计。项目经理应该使用以下哪一项来实现这个目标?

基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

项目概述 本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。 技术栈 深度学习框架:采用PyTorch或其他

电脑驱动分类

电脑驱动程序(驱动程序)是操作系统与硬件设备之间的桥梁,用于使操作系统能够识别并与硬件设备进行通信。以下是常见的驱动分类: 1. 设备驱动程序 显示驱动程序:控制显卡和显示器的显示功能,负责图形渲染和屏幕显示。 示例:NVIDIA、AMD 显示驱动程序。打印机驱动程序:允许操作系统与打印机通信,控制打印任务。 示例:HP、Canon 打印机驱动程序。声卡驱动程序:管理音频输入和输出,与声卡硬件