使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】

2023-11-29 11:45

本文主要是介绍使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要将图像从 sRGB 格式转换为 DCI-P3 格式,您需要使用适当的线性转换矩阵。在 OpenCV 中,这通常涉及使用色彩转换函数,但 OpenCV 默认情况下不直接支持 sRGB 到 DCI-P3 的转换。因此,您需要手动计算并应用转换矩阵。

转换矩阵取决于两个色彩空间的原色和白点坐标。首先,您需要获取这两个色彩空间的色度坐标:

  • sRGB 色彩空间的原色坐标。
  • DCI-P3 色彩空间的原色坐标。

然后,您需要计算从 sRGB 到 XYZ 色彩空间的转换矩阵,以及从 XYZ 到 DCI-P3 的转换矩阵。最后,通过将这两个矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

这些矩阵的计算涉及一些复杂的线性代数运算。下面是这个过程的简化版本:

  1. 计算 sRGB 到 XYZ 的转换矩阵:这需要 sRGB 的原色和白点坐标。

  2. 计算 XYZ 到 DCI-P3 的转换矩阵:这需要 DCI-P3 的原色和白点坐标。

  3. 合并这两个矩阵:通过矩阵乘法,您可以获得一个直接从 sRGB 到 DCI-P3 的转换矩阵。

在 OpenCV 中应用这个转换矩阵:

#include <opencv2/opencv.hpp>cv::Mat convert_sRGB_to_DCIP3(const cv::Mat& src) {// 定义转换矩阵cv::Matx33f transformMatrix = {/* 这里填写计算得到的矩阵 */};cv::Mat dst;src.convertTo(dst, CV_32F); // 确保使用浮点数cv::transform(dst, dst, transformMatrix);return dst;
}int main() {cv::Mat sRGB_image = cv::imread("path_to_sRGB_image.jpg");cv::Mat DCIP3_image = convert_sRGB_to_DCIP3(sRGB_image);// 保存或处理转换后的图像
}

请注意,这段代码中的转换矩阵需要您根据具体的色彩空间参数进行计算和填写。这通常涉及色彩科学的知识,并且可能需要调整以满足您的精确需求。

要计算从 sRGB 到 DCI-P3 的转换矩阵,我们需要遵循以下步骤:

  1. 定义色彩空间的原色坐标和白点:sRGB 和 DCI-P3 色彩空间的原色(红、绿、蓝)坐标和白点坐标是已知的。

  2. 计算转换矩阵:首先,计算从 sRGB 到 CIE 1931 XYZ 色彩空间的转换矩阵,然后计算从 XYZ 到 DCI-P3 的转换矩阵。最后,将这两个矩阵相乘得到从 sRGB 直接到 DCI-P3 的转换矩阵。

sRGB 到 XYZ

sRGB 色彩空间的原色坐标和 D65 白点(x=0.3127, y=0.3290)可以用来计算 sRGB 到 XYZ 的转换矩阵。sRGB 到 XYZ 的标准转换矩阵通常如下所示:

[ 0.4124564  0.3575761  0.1804375 ]
[ 0.2126729  0.7151522  0.0721750 ]
[ 0.0193339  0.1191920  0.9503041 ]

XYZ 到 DCI-P3

DCI-P3 色彩空间的原色坐标和 D65 白点可以用来计算 XYZ 到 DCI-P3 的转换矩阵。DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,您可以计算 XYZ 到 DCI-P3 的转换矩阵。这个计算相对复杂,涉及线性代数中的矩阵运算。

合并矩阵

最后,通过将 sRGB 到 XYZ 的矩阵与 XYZ 到 DCI-P3 的矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

由于这些计算相当复杂且超出了简单文本回复的范围,我建议使用专门的色彩管理软件或库来进行这些转换,或者在专业的色彩科学文献中查找已经计算好的转换矩阵。在实际应用中,这些转换通常涉及色彩管理系统(CMS),如 ICC 配置文件,以确保精确和一致的颜色再现。

要直接给出从 CIE 1931 XYZ 色彩空间到 DCI-P3 色彩空间的转换矩阵,我们需要使用 DCI-P3 色彩空间的原色坐标。假设我们使用 D65 白点(这是最常见的情况),DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,我们可以构建一个从 XYZ 到 DCI-P3 的转换矩阵。这个过程涉及计算一个将这些原色坐标映射到 XYZ 轴的矩阵,然后将其逆转换应用于 XYZ 数据。

转换矩阵可以通过以下步骤计算得出:

  1. 构建原色坐标矩阵:使用 DCI-P3 的原色坐标构建一个矩阵。

  2. 计算白点适应:使用 D65 白点坐标进行白点适应。

  3. 计算逆矩阵:计算上述矩阵的逆矩阵,以便可以将其应用于 XYZ 数据。

基于上述坐标,转换矩阵(从 XYZ 到 DCI-P3)大致为:

[ 2.493496911941425   -0.9313836179191239  -0.40271078445071684 ]
[-0.8294889695615747   1.7626640603183463   0.023624685841943577]
[ 0.03584583024378447 -0.07617238926804182  0.9568845240076872  ]

请注意,这个矩阵是基于标准的原色坐标和 D65 白点计算得出的,但实际应用中可能会有所不同,具体取决于您的具体需求和使用的色彩管理系统。在实际应用这个矩阵之前,建议进行彻底的测试和验证,以确保颜色的准确转换。

bool ConvertImageFormat(const std::string &originPath,const std::string &targetPath, ImageFormat format){// 瀹氫箟sRGB鍒癤YZ鐨勮浆鎹㈢煩闃?cv::Mat sRGBToXYZ = (cv::Mat_<double>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);static const std::vector<cv::Mat> MATRIX_ARR = {// IMAGE_DCI_P3(cv::Mat_<double>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872),// IMAGE_BT_2020(cv::Mat_<double>(3,3) <<1.7166512, -0.3556708, -0.2533663,-0.6666844, 1.6164812, 0.0157685,0.0176399, -0.0427706, 0.9421031),// IMAGE_ADOBE_RGB(cv::Mat_<double>(3,3) <<2.0413690, -0.5649464, -0.3446944,-0.9692660, 1.8760108, 0.0415560,0.0134474, -0.1183897, 1.0154096),};Mat img = cv::imread(originPath);if (img.empty() == true) {return false;}switch (format) {case IMAGE_SRGB:cv::imwrite(targetPath, img);break;case IMAGE_DCI_P3:case IMAGE_BT_2020:case IMAGE_ADOBE_RGB:{Mat imgXYZ;// 灏唖RGB鍥惧儚杞崲涓篨YZcv::transform(img, imgXYZ, sRGBToXYZ);Mat imgRet;cv::transform(imgXYZ, imgRet, MATRIX_ARR[format - 1]);cv::imwrite(targetPath, imgRet);}break;default:return false;break;}return true;}
 // 定义sRGB到XYZ的转换矩阵static const cv::Mat s_sRGB_XYZ_MATRIX = (cv::Mat_<float>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);cv::Mat Image_sRGB_DCI_P3(const cv::Mat &src){static const cv::Mat XYZ_DCI_P3_MATRIX = (cv::Mat_<float>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872);cv::Mat dst = src;// 确保使用浮点数src.convertTo(dst, CV_32F);// 将sRGB图像转换为XYZcv::transform(dst, dst, s_sRGB_XYZ_MATRIX);// XYZ 转 DCI_P3cv::transform(dst, dst, XYZ_DCI_P3_MATRIX);return dst;}

这篇关于使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432695

相关文章

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

C 语言中enum枚举的定义和使用小结

《C语言中enum枚举的定义和使用小结》在C语言里,enum(枚举)是一种用户自定义的数据类型,它能够让你创建一组具名的整数常量,下面我会从定义、使用、特性等方面详细介绍enum,感兴趣的朋友一起看... 目录1、引言2、基本定义3、定义枚举变量4、自定义枚举常量的值5、枚举与switch语句结合使用6、枚

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取

Python实现图片分割的多种方法总结

《Python实现图片分割的多种方法总结》图片分割是图像处理中的一个重要任务,它的目标是将图像划分为多个区域或者对象,本文为大家整理了一些常用的分割方法,大家可以根据需求自行选择... 目录1. 基于传统图像处理的分割方法(1) 使用固定阈值分割图片(2) 自适应阈值分割(3) 使用图像边缘检测分割(4)

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

Maven的使用和配置国内源的保姆级教程

《Maven的使用和配置国内源的保姆级教程》Maven是⼀个项目管理工具,基于POM(ProjectObjectModel,项目对象模型)的概念,Maven可以通过一小段描述信息来管理项目的构建,报告... 目录1. 什么是Maven?2.创建⼀个Maven项目3.Maven 核心功能4.使用Maven H

Python中__init__方法使用的深度解析

《Python中__init__方法使用的深度解析》在Python的面向对象编程(OOP)体系中,__init__方法如同建造房屋时的奠基仪式——它定义了对象诞生时的初始状态,下面我们就来深入了解下_... 目录一、__init__的基因图谱二、初始化过程的魔法时刻继承链中的初始化顺序self参数的奥秘默认

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

HTML5表格语法格式详解

《HTML5表格语法格式详解》在HTML语法中,表格主要通过table、tr和td3个标签构成,本文通过实例代码讲解HTML5表格语法格式,感兴趣的朋友一起看看吧... 目录一、表格1.表格语法格式2.表格属性 3.例子二、不规则表格1.跨行2.跨列3.例子一、表格在html语法中,表格主要通过< tab