使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】

2023-11-29 11:45

本文主要是介绍使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

要将图像从 sRGB 格式转换为 DCI-P3 格式,您需要使用适当的线性转换矩阵。在 OpenCV 中,这通常涉及使用色彩转换函数,但 OpenCV 默认情况下不直接支持 sRGB 到 DCI-P3 的转换。因此,您需要手动计算并应用转换矩阵。

转换矩阵取决于两个色彩空间的原色和白点坐标。首先,您需要获取这两个色彩空间的色度坐标:

  • sRGB 色彩空间的原色坐标。
  • DCI-P3 色彩空间的原色坐标。

然后,您需要计算从 sRGB 到 XYZ 色彩空间的转换矩阵,以及从 XYZ 到 DCI-P3 的转换矩阵。最后,通过将这两个矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

这些矩阵的计算涉及一些复杂的线性代数运算。下面是这个过程的简化版本:

  1. 计算 sRGB 到 XYZ 的转换矩阵:这需要 sRGB 的原色和白点坐标。

  2. 计算 XYZ 到 DCI-P3 的转换矩阵:这需要 DCI-P3 的原色和白点坐标。

  3. 合并这两个矩阵:通过矩阵乘法,您可以获得一个直接从 sRGB 到 DCI-P3 的转换矩阵。

在 OpenCV 中应用这个转换矩阵:

#include <opencv2/opencv.hpp>cv::Mat convert_sRGB_to_DCIP3(const cv::Mat& src) {// 定义转换矩阵cv::Matx33f transformMatrix = {/* 这里填写计算得到的矩阵 */};cv::Mat dst;src.convertTo(dst, CV_32F); // 确保使用浮点数cv::transform(dst, dst, transformMatrix);return dst;
}int main() {cv::Mat sRGB_image = cv::imread("path_to_sRGB_image.jpg");cv::Mat DCIP3_image = convert_sRGB_to_DCIP3(sRGB_image);// 保存或处理转换后的图像
}

请注意,这段代码中的转换矩阵需要您根据具体的色彩空间参数进行计算和填写。这通常涉及色彩科学的知识,并且可能需要调整以满足您的精确需求。

要计算从 sRGB 到 DCI-P3 的转换矩阵,我们需要遵循以下步骤:

  1. 定义色彩空间的原色坐标和白点:sRGB 和 DCI-P3 色彩空间的原色(红、绿、蓝)坐标和白点坐标是已知的。

  2. 计算转换矩阵:首先,计算从 sRGB 到 CIE 1931 XYZ 色彩空间的转换矩阵,然后计算从 XYZ 到 DCI-P3 的转换矩阵。最后,将这两个矩阵相乘得到从 sRGB 直接到 DCI-P3 的转换矩阵。

sRGB 到 XYZ

sRGB 色彩空间的原色坐标和 D65 白点(x=0.3127, y=0.3290)可以用来计算 sRGB 到 XYZ 的转换矩阵。sRGB 到 XYZ 的标准转换矩阵通常如下所示:

[ 0.4124564  0.3575761  0.1804375 ]
[ 0.2126729  0.7151522  0.0721750 ]
[ 0.0193339  0.1191920  0.9503041 ]

XYZ 到 DCI-P3

DCI-P3 色彩空间的原色坐标和 D65 白点可以用来计算 XYZ 到 DCI-P3 的转换矩阵。DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,您可以计算 XYZ 到 DCI-P3 的转换矩阵。这个计算相对复杂,涉及线性代数中的矩阵运算。

合并矩阵

最后,通过将 sRGB 到 XYZ 的矩阵与 XYZ 到 DCI-P3 的矩阵相乘,可以得到直接从 sRGB 到 DCI-P3 的转换矩阵。

由于这些计算相当复杂且超出了简单文本回复的范围,我建议使用专门的色彩管理软件或库来进行这些转换,或者在专业的色彩科学文献中查找已经计算好的转换矩阵。在实际应用中,这些转换通常涉及色彩管理系统(CMS),如 ICC 配置文件,以确保精确和一致的颜色再现。

要直接给出从 CIE 1931 XYZ 色彩空间到 DCI-P3 色彩空间的转换矩阵,我们需要使用 DCI-P3 色彩空间的原色坐标。假设我们使用 D65 白点(这是最常见的情况),DCI-P3 的原色坐标大致为:

  • 红色:(0.680, 0.320)
  • 绿色:(0.265, 0.690)
  • 蓝色:(0.150, 0.060)

使用这些坐标,我们可以构建一个从 XYZ 到 DCI-P3 的转换矩阵。这个过程涉及计算一个将这些原色坐标映射到 XYZ 轴的矩阵,然后将其逆转换应用于 XYZ 数据。

转换矩阵可以通过以下步骤计算得出:

  1. 构建原色坐标矩阵:使用 DCI-P3 的原色坐标构建一个矩阵。

  2. 计算白点适应:使用 D65 白点坐标进行白点适应。

  3. 计算逆矩阵:计算上述矩阵的逆矩阵,以便可以将其应用于 XYZ 数据。

基于上述坐标,转换矩阵(从 XYZ 到 DCI-P3)大致为:

[ 2.493496911941425   -0.9313836179191239  -0.40271078445071684 ]
[-0.8294889695615747   1.7626640603183463   0.023624685841943577]
[ 0.03584583024378447 -0.07617238926804182  0.9568845240076872  ]

请注意,这个矩阵是基于标准的原色坐标和 D65 白点计算得出的,但实际应用中可能会有所不同,具体取决于您的具体需求和使用的色彩管理系统。在实际应用这个矩阵之前,建议进行彻底的测试和验证,以确保颜色的准确转换。

bool ConvertImageFormat(const std::string &originPath,const std::string &targetPath, ImageFormat format){// 瀹氫箟sRGB鍒癤YZ鐨勮浆鎹㈢煩闃?cv::Mat sRGBToXYZ = (cv::Mat_<double>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);static const std::vector<cv::Mat> MATRIX_ARR = {// IMAGE_DCI_P3(cv::Mat_<double>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872),// IMAGE_BT_2020(cv::Mat_<double>(3,3) <<1.7166512, -0.3556708, -0.2533663,-0.6666844, 1.6164812, 0.0157685,0.0176399, -0.0427706, 0.9421031),// IMAGE_ADOBE_RGB(cv::Mat_<double>(3,3) <<2.0413690, -0.5649464, -0.3446944,-0.9692660, 1.8760108, 0.0415560,0.0134474, -0.1183897, 1.0154096),};Mat img = cv::imread(originPath);if (img.empty() == true) {return false;}switch (format) {case IMAGE_SRGB:cv::imwrite(targetPath, img);break;case IMAGE_DCI_P3:case IMAGE_BT_2020:case IMAGE_ADOBE_RGB:{Mat imgXYZ;// 灏唖RGB鍥惧儚杞崲涓篨YZcv::transform(img, imgXYZ, sRGBToXYZ);Mat imgRet;cv::transform(imgXYZ, imgRet, MATRIX_ARR[format - 1]);cv::imwrite(targetPath, imgRet);}break;default:return false;break;}return true;}
 // 定义sRGB到XYZ的转换矩阵static const cv::Mat s_sRGB_XYZ_MATRIX = (cv::Mat_<float>(3,3) <<0.4124564, 0.3575761, 0.1804375,0.2126729, 0.7151522, 0.0721750,0.0193339, 0.1191920, 0.9503041);cv::Mat Image_sRGB_DCI_P3(const cv::Mat &src){static const cv::Mat XYZ_DCI_P3_MATRIX = (cv::Mat_<float>(3,3) <<2.493496911941425, -0.9313836179191239, -0.40271078445071684,-0.8294889695615747, 1.7626640603183463,  0.023624685841943577,0.03584583024378447, -0.07617238926804182, 0.9568845240076872);cv::Mat dst = src;// 确保使用浮点数src.convertTo(dst, CV_32F);// 将sRGB图像转换为XYZcv::transform(dst, dst, s_sRGB_XYZ_MATRIX);// XYZ 转 DCI_P3cv::transform(dst, dst, XYZ_DCI_P3_MATRIX);return dst;}

这篇关于使用opencv将sRGB格式的图片转换为DCI-P3格式【sRGB】【DCI-P3】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432695

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

深入理解Go语言中二维切片的使用

《深入理解Go语言中二维切片的使用》本文深入讲解了Go语言中二维切片的概念与应用,用于表示矩阵、表格等二维数据结构,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起学习学习吧... 目录引言二维切片的基本概念定义创建二维切片二维切片的操作访问元素修改元素遍历二维切片二维切片的动态调整追加行动态

prometheus如何使用pushgateway监控网路丢包

《prometheus如何使用pushgateway监控网路丢包》:本文主要介绍prometheus如何使用pushgateway监控网路丢包问题,具有很好的参考价值,希望对大家有所帮助,如有错误... 目录监控网路丢包脚本数据图表总结监控网路丢包脚本[root@gtcq-gt-monitor-prome

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

SpringBoot中如何使用Assert进行断言校验

《SpringBoot中如何使用Assert进行断言校验》Java提供了内置的assert机制,而Spring框架也提供了更强大的Assert工具类来帮助开发者进行参数校验和状态检查,下... 目录前言一、Java 原生assert简介1.1 使用方式1.2 示例代码1.3 优缺点分析二、Spring Fr

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解