STM32学习笔记之时钟分析(受启发有汲取之处)

2023-11-29 10:58

本文主要是介绍STM32学习笔记之时钟分析(受启发有汲取之处),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文结合网上的两篇时钟分析文章,并结合本人的理解来分析STM32的时钟系统。

众所周知,一个微控制器或处理器的运行必须要依赖周期性的时钟脉冲来驱动,通常是通过外接晶振来实现的。在学习单片机(51系列,AVR系列,PIC系列)的过程中,只要设定了外接晶振,我们就只关心的时序图,无需再进行时钟的配置,而STM32微控制器的时钟树则是可配置的,其时钟输入源与最终达到外设处的时钟速率不再有固定的关系,本文将来详细解析STM32微控制器的时钟树。

在官方提供的STM32参考手册或数据手册中,提供了如下的时钟树结构图:

为了方便分析,简化为如下的时钟树,


由图可知:STM32主要有5个时钟源,分别为HSI、HSE、LSI、LSE、PLL,如灰蓝色如示,而PLL是由锁相环电路倍频得到PLL时钟。从上到下分析,分别 为:

  1. HSI是高速内部时钟,内置RC振荡器,频率为8MHz;
  2. HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz,一般接8MHz石英晶振;
  3. LSE是低速外部时钟,接频率为32.768kHz的石英晶体,主要提供一个精确的时钟源一般作为RTC时钟使用;
  4. LSI是低速内部时钟,RC振荡器,频率为40kHz。它供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择;
  5. PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2,倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz 

系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:

  1. 送给AHB总线、内核、内存和DMA使用的HCLK时钟;
  2. 通过8分频后送给Cortex的系统定时器时钟;
  3. 直接送给Cortex的空闲运行时钟FCLK;
  4. 送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用;
  5. 送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。

另外:

(1)STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
(2)STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。

 

在STM32处理器,对应每一模块,都需要为其配置时钟源,我们将官方提供的时钟树再进行细化,就得到如下的时钟树,其中图中的标号分别为:1:内部低速振荡器(LSI,40Khz);2:外部低速振荡器(LSE,32.768Khz);3:外部高速振荡器(HSE,3-25MHz);4:内部高速振荡器(HIS,8MHz);5:PLL输入选择位;6:RTC时钟选择位;7:PLL1分频数寄存器;8:PLL1倍频寄存器;9:系统时钟选择位;10:USB分频寄存器;11:AHB分频寄存器;12:APB1分频寄存器;13:AHB总线;14:APB1外设总线;15:APB2分频寄存器;16:APB2外设总线;17:ADC预分频寄存器;18:ADC外设;19:PLL2分频数寄存器;20:PLL2倍频寄存器;21:PLL时钟源选择寄存器;22:独立看门狗设备;23:RTC设备



  假设我们要设置位于APB2控制的GPIO外设时钟,则我们得到的时钟轨迹应该是:3-->5-->7-->21-->8-->9-->11-->15-->16。即:首先(3)是外部的3-25MHz(前文已假设为8MHz)输入;通过(5)PLL选择位预先选择后续PLL分支的输入时钟(假设选择外部晶振);设置(7)外部晶振的分频数(假设1分频);选择(21)PLL倍频的时钟源(假设选择经过分频后的外部晶振时钟);对于8,设置(8)PLL倍频数(假设9倍频);选择(9)系统时钟源(假设选择经过PLL倍频所输出的时钟);设置(11)AHB总线分频数(假设1分频);设置(15)APB2总线分频数(假设1分频);时钟到达APB2总线(16)。

GPIO设备的最大驱动时钟速率(各个条件已在上述要点中假设):

1)   由3所知晶振输入为8MHz,由5——21知PLL的时钟源为经过分频后的外部晶振时钟,并且此分频数为1分频,因此首先得出PLL的时钟源为:8MHz / 1 = 8MHz。

2)   由8、9知PLL倍频数为9,且将PLL倍频后的时钟输出选择为系统时钟,则得出系统时钟为 8MHz * 9 = 72MHz。

3)   时钟到达AHB预分频器,由11知时钟经过AHB预分频器之后的速率仍为72MHz。

4)   时钟到达APB2预分频器,由15经过APB2预分频器后速率仍为72MHz。

5)   时钟到达APB2总线外设。

因此STM32的APB2总线外设,所能达到的最大速率为72MHz。


接下来从程序的角度分析时钟树的设置,程序清单如下:

[cpp]  view plain copy
  1. void RCC_Configuration(void)  
  2. {  
  3.        ErrorStatusHSEStartUpStatus;                                                                                                (1)  
  4. RCC_DeInit();                                                                                                                              (2)  
  5. RCC_HSEConfig(RCC_HSE_ON);                                                                                             (3)  
  6.        HSEStartUpStatus= RCC_WaitForHSEStartUp();                                                                 (4)  
  7.        if(HSEStartUpStatus== SUCCESS)                                                                                            (5)  
  8.        {  
  9.          RCC_HCLKConfig(RCC_SYSCLK_Div1);                                                                          (6)  
  10.               RCC_PCLK2Config(RCC_HCLK_Div1);                                                                          (7)  
  11.              RCC_PCLK1Config(RCC_HCLK_Div2);                                                                            (8)  
  12.         FLASH_SetLatency(FLASH_Latency_2);                                                                        (9)  
  13.              FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);                                    (10)  
  14.               RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);                                      (11)  
  15.        RCC_PLLCmd(ENABLE);                                                                                                         (12)  
  16.               while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY)== RESET);                                                    (13)  
  17.          RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);                                                           (14)  
  18.               while(RCC_GetSYSCLKSource() != 0x08);                                                                          (15)  
  19.        }  
  20. }  

即:
1)定义一个ErrorStatus类型的变量HSEStartUpStatus
2)将时钟树复位至默认设置;
3)开启HSE晶振;
4)等待HSE晶振起振稳定,并将起振结果保存至HSEStartUpStatus变量中;
5)判断HSE晶振是否起振成功(假设成功了,进入if内部);
6)设置HCLK时钟为SYSCLK1分频;
7)设置PLCK2时钟为SYSCLK1分频;
8)设置PLCK1时钟为SYSCLK2分频;
11)选择PLL输入源为HSE时钟经过1分频,并进行9倍频;
12)使能PLL输出;
13)等待PLL输出稳定;
14)选择系统时钟源为PLL输出;
15)等待系统时钟稳定;

注:(1)PLLCLK表示PLL锁相环的输出时钟,SYSCLK表示系统时钟,HCLK表示AHB总线的时钟,PCLK1表示APB1总线的时钟,PCLK2则表示APB2总线的时钟

(2)以上是ST官方所提供的STM32时钟树配置函数

这篇关于STM32学习笔记之时钟分析(受启发有汲取之处)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/432561

相关文章

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Java程序进程起来了但是不打印日志的原因分析

《Java程序进程起来了但是不打印日志的原因分析》:本文主要介绍Java程序进程起来了但是不打印日志的原因分析,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Java程序进程起来了但是不打印日志的原因1、日志配置问题2、日志文件权限问题3、日志文件路径问题4、程序

Java字符串操作技巧之语法、示例与应用场景分析

《Java字符串操作技巧之语法、示例与应用场景分析》在Java算法题和日常开发中,字符串处理是必备的核心技能,本文全面梳理Java中字符串的常用操作语法,结合代码示例、应用场景和避坑指南,可快速掌握字... 目录引言1. 基础操作1.1 创建字符串1.2 获取长度1.3 访问字符2. 字符串处理2.1 子字

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle

利用Python快速搭建Markdown笔记发布系统

《利用Python快速搭建Markdown笔记发布系统》这篇文章主要为大家详细介绍了使用Python生态的成熟工具,在30分钟内搭建一个支持Markdown渲染、分类标签、全文搜索的私有化知识发布系统... 目录引言:为什么要自建知识博客一、技术选型:极简主义开发栈二、系统架构设计三、核心代码实现(分步解析

C++ Sort函数使用场景分析

《C++Sort函数使用场景分析》sort函数是algorithm库下的一个函数,sort函数是不稳定的,即大小相同的元素在排序后相对顺序可能发生改变,如果某些场景需要保持相同元素间的相对顺序,可使... 目录C++ Sort函数详解一、sort函数调用的两种方式二、sort函数使用场景三、sort函数排序

kotlin中const 和val的区别及使用场景分析

《kotlin中const和val的区别及使用场景分析》在Kotlin中,const和val都是用来声明常量的,但它们的使用场景和功能有所不同,下面给大家介绍kotlin中const和val的区别,... 目录kotlin中const 和val的区别1. val:2. const:二 代码示例1 Java

Go标准库常见错误分析和解决办法

《Go标准库常见错误分析和解决办法》Go语言的标准库为开发者提供了丰富且高效的工具,涵盖了从网络编程到文件操作等各个方面,然而,标准库虽好,使用不当却可能适得其反,正所谓工欲善其事,必先利其器,本文将... 目录1. 使用了错误的time.Duration2. time.After导致的内存泄漏3. jsO

Spring事务中@Transactional注解不生效的原因分析与解决

《Spring事务中@Transactional注解不生效的原因分析与解决》在Spring框架中,@Transactional注解是管理数据库事务的核心方式,本文将深入分析事务自调用的底层原理,解释为... 目录1. 引言2. 事务自调用问题重现2.1 示例代码2.2 问题现象3. 为什么事务自调用会失效3

找不到Anaconda prompt终端的原因分析及解决方案

《找不到Anacondaprompt终端的原因分析及解决方案》因为anaconda还没有初始化,在安装anaconda的过程中,有一行是否要添加anaconda到菜单目录中,由于没有勾选,导致没有菜... 目录问题原因问http://www.chinasem.cn题解决安装了 Anaconda 却找不到 An