人工智能|机器学习——感知器算法原理与python实现

2023-11-29 07:36

本文主要是介绍人工智能|机器学习——感知器算法原理与python实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

感知器算法是一种可以直接得到线性判别函数的线性分类方法,它是基于样本线性可分的要求下使用的。

一、线性可分与线性不可分

为了方便讨论,我们蒋样本_{X}增加了以为常数,得到增广样向量 y=(1;x_{1};x_{2};...;x_{n},则n个样本的集合为y_{1},y_{2};y_{3},.....,y_{n},增广权矢量表示为 a = (\omega _{0}\omega _{1};\omega _{2}....,\omega _{d},我们得到新的怕没别函数 

 二、算法步骤

三、算法实现

1.生成数据

 

import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets# 加载数据集
iris = datasets.load_iris()# 提取特征和目标变量
x = iris.data
y = iris.target# 只选择两个特征变量和两个目标类别,进行简单的二分类
x = x[y < 2, :2]
y = y[y < 2]# 绘制散点图
plt.scatter(x[y == 0, 0], x[y == 0, 1])  # 绘制类别0的样本
plt.scatter(x[y == 1, 0], x[y == 1, 1])  # 绘制类别1的样本
plt.show()

2.实现算法

def check(w, x, y):# 检查预测结果是否与真实标签一致return ((w.dot(x.T)>0).astype(int)==y).all() def train(w, train_x, train_y, learn=1, max_iter=200):iter = 0while ~check(w, train_x, train_y) and iter<=max_iter:iter += 1for i in range(train_y.size):predict_y = (w.dot(train_x[i].T)>0).astype(int)if predict_y != train_y[i]:# 根据预测和真实标签的差异调整权重w += learn*(train_y[i] - predict_y)*train_x[i]return wdef normalize(x):# 归一化函数,将输入数据转换到0-1范围max_x = np.max(x, axis=0)min_x = np.min(x, axis=0)norm_x = (max_x - x) / (max_x - min_x)return norm_xnorm_x = normalize(x)
train_x = np.insert(norm_x, 0, values=np.ones(100).T, axis=1)
w = np.random.random(3)
w = train(w, train_x, y)

3.绘制决策边界 

def plot_decision_boundary(w, axis):# 生成决策边界的坐标网格x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1] - axis[0])*100)).reshape(1, -1),np.linspace(axis[2], axis[3], int((axis[3] - axis[2])*100)).reshape(1, -1))x_new = np.c_[x0.ravel(), x1.ravel()]x_new = np.insert(x_new, 0, np.ones(x_new.shape[0]), axis=1)# 对网格中的点进行预测y_predict = (w.dot(x_new.T)>0).astype(int)zz = y_predict.reshape(x0.shape)# 设置自定义的颜色映射from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A', '#FFF59D', '#90CAF9'])# 绘制决策边界plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)# 绘制决策边界
plot_decision_boundary(w, axis=[-1, 1, -1, 1])
# 绘制类别为0的样本点(红色)
plt.scatter(norm_x[y==0, 0], norm_x[y==0, 1], color='red')
# 绘制类别为1的样本点(蓝色)
plt.scatter(norm_x[y==1, 0], norm_x[y==1, 1], color='blue')
# 显示图形
plt.show()

4.使用sklearn库完成算法

from sklearn.datasets import make_classificationx,y = make_classification(n_samples=1000, n_features=2,n_redundant=0,n_informative=1,n_clusters_per_class=1)#n_samples:生成样本的数量#n_features=2:生成样本的特征数,特征数=n_informative() + n_redundant + n_repeated#n_informative:多信息特征的个数#n_redundant:冗余信息,informative特征的随机线性组合#n_clusters_per_class :某一个类别是由几个cluster构成的 #训练数据和测试数据
x_data_train = x[:800,:]
x_data_test = x[800:,:]
y_data_train = y[:800]
y_data_test = y[800:]#正例和反例
positive_x1 = [x[i,0] for i in range(1000) if y[i] == 1]
positive_x2 = [x[i,1] for i in range(1000) if y[i] == 1]
negetive_x1 = [x[i,0] for i in range(1000) if y[i] == 0]
negetive_x2 = [x[i,1] for i in range(1000) if y[i] == 0]
from sklearn.linear_model import Perceptron
#定义感知机
clf = Perceptron(fit_intercept=False,shuffle=False)
#使用训练数据进行训练
clf.fit(x_data_train,y_data_train)
#得到训练结果,权重矩阵
print(clf.coef_)
#输出为:[[-0.38478876,4.41537463]]#超平面的截距,此处输出为:[0.]
print(clf.intercept_)#利用测试数据进行验证
acc = clf.score(x_data_test,y_data_test)
print(acc)
#得到的输出结果为0.98,这个结果还不错吧。
from matplotlib import pyplot as plt
#画出正例和反例的散点图
plt.scatter(positive_x1,positive_x2,c='red')
plt.scatter(negetive_x1,negetive_x2,c='blue')
#画出超平面(在本例中即是一条直线)
line_x = np.arange(-4,4)
line_y = line_x * (-clf.coef_[0][0] / clf.coef_[0][1]) - clf.intercept_
plt.plot(line_x,line_y)
plt.show()

 

四、优缺点

1.优点:

简单且易于实现:感知器算法是一种简单而有效的分类算法,它的基本原理易于理解,实现也相对简单。
收敛性保证:如果数据集是线性可分的,感知器算法可以收敛到最优解,即找到将不同类别分开的最优超平面。
适用于大型数据集:感知器算法具有较好的可扩展性,对于大型数据集也能够有效处理。

2缺点:

仅适用于线性可分问题:感知器算法只能处理线性可分的问题,当数据集不满足线性可分条件时,算法不能收敛到最优解。
对初始权重敏感:感知器算法的收敛性与初始权重的选择有关,较差的初始权重选择可能导致算法无法收敛或者收敛到较差的分类结果。
无法处理非线性问题:感知器算法无法处理非线性的分类问题,对于非线性数据集,需要使用更复杂的分类算法或者考虑使用特征转换等技术。
只能进行二分类:感知器算法只能进行二分类,无法直接处理多分类问题,需要通过拓展或组合多个感知器来处理多分类任务。

总体而言,感知器算法是一种简单而有效的线性分类算法,适用于处理线性可分的二分类问题。然而,对于非线性问题或者多分类问题,感知器算法存在一些局限性,需要使用其他更复杂的算法来解决。

这篇关于人工智能|机器学习——感知器算法原理与python实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/431991

相关文章

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Go语言开发实现查询IP信息的MCP服务器

《Go语言开发实现查询IP信息的MCP服务器》随着MCP的快速普及和广泛应用,MCP服务器也层出不穷,本文将详细介绍如何在Go语言中使用go-mcp库来开发一个查询IP信息的MCP... 目录前言mcp-ip-geo 服务器目录结构说明查询 IP 信息功能实现工具实现工具管理查询单个 IP 信息工具的实现服

Python的time模块一些常用功能(各种与时间相关的函数)

《Python的time模块一些常用功能(各种与时间相关的函数)》Python的time模块提供了各种与时间相关的函数,包括获取当前时间、处理时间间隔、执行时间测量等,:本文主要介绍Python的... 目录1. 获取当前时间2. 时间格式化3. 延时执行4. 时间戳运算5. 计算代码执行时间6. 转换为指

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

SpringBoot基于配置实现短信服务策略的动态切换

《SpringBoot基于配置实现短信服务策略的动态切换》这篇文章主要为大家详细介绍了SpringBoot在接入多个短信服务商(如阿里云、腾讯云、华为云)后,如何根据配置或环境切换使用不同的服务商,需... 目录目标功能示例配置(application.yml)配置类绑定短信发送策略接口示例:阿里云 & 腾

Python ZIP文件操作技巧详解

《PythonZIP文件操作技巧详解》在数据处理和系统开发中,ZIP文件操作是开发者必须掌握的核心技能,Python标准库提供的zipfile模块以简洁的API和跨平台特性,成为处理ZIP文件的首选... 目录一、ZIP文件操作基础三板斧1.1 创建压缩包1.2 解压操作1.3 文件遍历与信息获取二、进阶技

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py