Week-T11-优化器对比试验

2023-11-29 01:36
文章标签 优化 试验 对比 week t11

本文主要是介绍Week-T11-优化器对比试验,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 一、准备环境
  • 二、准备数据
  • 三、搭建训练网络
  • 三、训练模型
    • (1)VSCode训练情况:
    • (2)`jupyter notebook`训练情况:
  • 四、模型评估 & 模型预测
    • 1、绘制Accuracy-Loss图
    • 2、显示model2的预测效果
  • 五、总结
    • 1、`plt.savefig("./数据展示.jpg")`保存的图片在文件夹内打开是空白的,如下图所示:
    • 2. 优化器是什么?包括哪些?

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

本文主要探究不同优化器、以及不同参数配置对模型的影响,最终对Adam、SGD优化器进行比较,并绘制比较结果。

使用的数据集为咖啡豆数据集,共有四类。

优化器常用的有Adam、SGD。优化器的归纳将放在文末的总结部分。

本文将使用Adam优化器的模型命名为"model1",使用SGD优化器的模型命名为"model2",然后根据模型训练结果绘制各自的Accuracy-Loss图。比较得出,在运行环境、epoch次数相同、模型结构相同等条件下,Adam优化器的整体情况要优于SGD优化器。

一、准备环境

# 1. 设置环境
import sys
import tensorflow as tf
from datetime import datetimefrom tensorflow          import keras
import matplotlib.pyplot as plt
import pandas            as pd
import numpy             as np
import warnings,os,PIL,pathlibprint("---------------------1.配置环境------------------")
print("Start time: ", datetime.today())
print("tensorflow version: " + tf.__version__)
print("Python version: " + sys.version)gpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")# 打印显卡信息,确认GPU可用print("GPU: " + gpus)
else:print("Using CPU")warnings.filterwarnings("ignore")             #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False    # 用来正常显示负号

在这里插入图片描述

Q1: VSCode虚拟环境安装pandas
在这里插入图片描述

二、准备数据

# 2.导入数据
# 本次使用咖啡豆数据集(共4类)
print("---------------------2.1 从本地读取数据------------------")
data_dir    = "D:/jupyter notebook/DL-100-days/datasets/coffebeans-data"
data_dir    = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*')))
print("图片总数为:",image_count)batch_size = 16
img_height = 336
img_width  = 336"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
print("---------------------2.2 划分训练数据------------------")
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=12,image_size=(img_height, img_width),batch_size=batch_size)"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
print("---------------------2.3 划分验证数据------------------")
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=12,image_size=(img_height, img_width),batch_size=batch_size)print("---------------------2.4 打印数据类别 && 数据的shape------------------")
class_names = train_ds.class_names
print(class_names)for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)breakprint("---------------------2.5 配置数据集------------------")
AUTOTUNE = tf.data.AUTOTUNEdef train_preprocessing(image,label):return (image/255.0,label)train_ds = (train_ds.cache().shuffle(1000).map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)           # 在image_dataset_from_directory处已经设置了batch_size.prefetch(buffer_size=AUTOTUNE)
)val_ds = (val_ds.cache().shuffle(1000).map(train_preprocessing)    # 这里可以设置预处理函数
#     .batch(batch_size)         # 在image_dataset_from_directory处已经设置了batch_size.prefetch(buffer_size=AUTOTUNE)
)print("---------------------2.6 数据可视化,显示部分样本图片------------------")
plt.figure(figsize=(10, 8))  # 图形的宽为10高为5
plt.suptitle("数据展示")for images, labels in train_ds.take(1):for i in range(15):plt.subplot(4, 5, i + 1)plt.xticks([])plt.yticks([])plt.grid(False)# 显示图片plt.imshow(images[i])# 显示标签plt.xlabel(class_names[labels[i]-1])plt.show()
plt.savefig("./数据展示.jpg")

在这里插入图片描述
在这里插入图片描述

Q2:plt.savefig("./数据展示.jpg")保存的图片在文件夹内打开是空白的

三、搭建训练网络

print("---------------------3. 搭建训练网络,此处预训练模型调用VGG-16官方模型------------------")
# 自定义一个创建模型的函数,形参是优化器类型,预训练模型是VGG-16,但屏蔽了自带的训练部分以及顶层,然后对输出进行处理
# 在此处创建了两个网络,拥有不同的优化器类型
from tensorflow.keras.layers import Dropout,Dense,BatchNormalization
from tensorflow.keras.models import Modeldef create_model(optimizer='adam'):# 加载预训练模型vgg16_base_model = tf.keras.applications.vgg16.VGG16(weights='imagenet',include_top=False,input_shape=(img_width, img_height, 3),pooling='avg')for layer in vgg16_base_model.layers:layer.trainable = FalseX = vgg16_base_model.outputX = Dense(170, activation='relu')(X)X = BatchNormalization()(X)X = Dropout(0.5)(X)output = Dense(len(class_names), activation='softmax')(X)vgg16_model = Model(inputs=vgg16_base_model.input, outputs=output)vgg16_model.compile(optimizer=optimizer,loss='sparse_categorical_crossentropy',metrics=['accuracy'])return vgg16_modelmodel1 = create_model(optimizer=tf.keras.optimizers.Adam())
model2 = create_model(optimizer=tf.keras.optimizers.SGD())
model2.summary()

在这里插入图片描述

三、训练模型

print("---------------------4.启动训练,epoch==50------------------")
# try:加入早停试一下,一个epoch跑完要220s,时间还是有点久
NO_EPOCHS = 50history_model1  = model1.fit(train_ds, epochs=NO_EPOCHS, verbose=1, validation_data=val_ds)
history_model2  = model2.fit(train_ds, epochs=NO_EPOCHS, verbose=1, validation_data=val_ds)

(1)VSCode训练情况:

model1.fit():Adam优化器
在这里插入图片描述
model2.fit():SGD优化器
在这里插入图片描述

(2)jupyter notebook训练情况:

model1.fit():即Adam优化器
在这里插入图片描述
model2.fit():即SGD优化器
在这里插入图片描述

四、模型评估 & 模型预测

1、绘制Accuracy-Loss图

print("---------------------5.1 模型评估,绘制Accuracy-Loss图------------------")
from matplotlib.ticker import MultipleLocator
plt.rcParams['savefig.dpi'] = 300 #图片像素
plt.rcParams['figure.dpi']  = 300 #分辨率acc1     = history_model1.history['accuracy']
acc2     = history_model2.history['accuracy']
val_acc1 = history_model1.history['val_accuracy']
val_acc2 = history_model2.history['val_accuracy']loss1     = history_model1.history['loss']
loss2     = history_model2.history['loss']
val_loss1 = history_model1.history['val_loss']
val_loss2 = history_model2.history['val_loss']epochs_range = range(len(acc1))plt.figure(figsize=(16, 4))
plt.subplot(1, 2, 1)plt.plot(epochs_range, acc1, label='Training Accuracy-Adam')
plt.plot(epochs_range, acc2, label='Training Accuracy-SGD')
plt.plot(epochs_range, val_acc1, label='Validation Accuracy-Adam')
plt.plot(epochs_range, val_acc2, label='Validation Accuracy-SGD')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
# 设置刻度间隔,x轴每1一个刻度
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss1, label='Training Loss-Adam')
plt.plot(epochs_range, loss2, label='Training Loss-SGD')
plt.plot(epochs_range, val_loss1, label='Validation Loss-Adam')
plt.plot(epochs_range, val_loss2, label='Validation Loss-SGD')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')# 设置刻度间隔,x轴每1一个刻度
ax = plt.gca()
ax.xaxis.set_major_locator(MultipleLocator(1))
plt.savefig("./Accuracy-Loss图.jpg")
plt.show()

plt.show()显示的图片:
请添加图片描述
比较Accuracy图表,可以看出训练时Adam优化器的表现要稍优于SGD优化器,而验证时则相反。

Q: VSCode绘制出来的图咋这么奇怪?
改变plt.savefig("./Accuracy-Loss图.jpg")的位置后所保存的图片,比直接plt.show()的图片比例要好些。
在这里插入图片描述

2、显示model2的预测效果

print("---------------------5.2 模型预测------------------")
def test_accuracy_report(model):score = model.evaluate(val_ds, verbose=0)print('Loss function: %s, accuracy:' % score[0], score[1])test_accuracy_report(model2)

VSCode环境下的预测结果:
在这里插入图片描述
jupyter notebook环境下的预测结果:
在这里插入图片描述

五、总结

1、plt.savefig("./数据展示.jpg")保存的图片在文件夹内打开是空白的,如下图所示:

在这里插入图片描述
将保存的语句放在plt.show()之前,因为plt.show()之后会默认打开一个空白画板。

2. 优化器是什么?包括哪些?

(参考文章也是来自训练营文章)

优化器是什么?

  • 优化器是一种算法,它在模型优化过程中,动态地调整梯度的大小和方向,使模型能够收敛到更好的位置,或者用更快的速度进行收敛。
  • 各类优化器方法总结如下:
    在这里插入图片描述

这篇关于Week-T11-优化器对比试验的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/430976

相关文章

Deepseek使用指南与提问优化策略方式

《Deepseek使用指南与提问优化策略方式》本文介绍了DeepSeek语义搜索引擎的核心功能、集成方法及优化提问策略,通过自然语言处理和机器学习提供精准搜索结果,适用于智能客服、知识库检索等领域... 目录序言1. DeepSeek 概述2. DeepSeek 的集成与使用2.1 DeepSeek API

Tomcat高效部署与性能优化方式

《Tomcat高效部署与性能优化方式》本文介绍了如何高效部署Tomcat并进行性能优化,以确保Web应用的稳定运行和高效响应,高效部署包括环境准备、安装Tomcat、配置Tomcat、部署应用和启动T... 目录Tomcat高效部署与性能优化一、引言二、Tomcat高效部署三、Tomcat性能优化总结Tom

解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)

《解读Redis秒杀优化方案(阻塞队列+基于Stream流的消息队列)》该文章介绍了使用Redis的阻塞队列和Stream流的消息队列来优化秒杀系统的方案,通过将秒杀流程拆分为两条流水线,使用Redi... 目录Redis秒杀优化方案(阻塞队列+Stream流的消息队列)什么是消息队列?消费者组的工作方式每

Oracle查询优化之高效实现仅查询前10条记录的方法与实践

《Oracle查询优化之高效实现仅查询前10条记录的方法与实践》:本文主要介绍Oracle查询优化之高效实现仅查询前10条记录的相关资料,包括使用ROWNUM、ROW_NUMBER()函数、FET... 目录1. 使用 ROWNUM 查询2. 使用 ROW_NUMBER() 函数3. 使用 FETCH FI

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,

Java内存泄漏问题的排查、优化与最佳实践

《Java内存泄漏问题的排查、优化与最佳实践》在Java开发中,内存泄漏是一个常见且令人头疼的问题,内存泄漏指的是程序在运行过程中,已经不再使用的对象没有被及时释放,从而导致内存占用不断增加,最终... 目录引言1. 什么是内存泄漏?常见的内存泄漏情况2. 如何排查 Java 中的内存泄漏?2.1 使用 J

MySQL不使用子查询的原因及优化案例

《MySQL不使用子查询的原因及优化案例》对于mysql,不推荐使用子查询,效率太差,执行子查询时,MYSQL需要创建临时表,查询完毕后再删除这些临时表,所以,子查询的速度会受到一定的影响,本文给大家... 目录不推荐使用子查询和JOIN的原因解决方案优化案例案例1:查询所有有库存的商品信息案例2:使用EX

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

锐捷和腾达哪个好? 两个品牌路由器对比分析

《锐捷和腾达哪个好?两个品牌路由器对比分析》在选择路由器时,Tenda和锐捷都是备受关注的品牌,各自有独特的产品特点和市场定位,选择哪个品牌的路由器更合适,实际上取决于你的具体需求和使用场景,我们从... 在选购路由器时,锐捷和腾达都是市场上备受关注的品牌,但它们的定位和特点却有所不同。锐捷更偏向企业级和专

什么是 Ubuntu LTS?Ubuntu LTS和普通版本区别对比

《什么是UbuntuLTS?UbuntuLTS和普通版本区别对比》UbuntuLTS是Ubuntu操作系统的一个特殊版本,旨在提供更长时间的支持和稳定性,与常规的Ubuntu版本相比,LTS版... 如果你正打算安装 Ubuntu 系统,可能会被「LTS 版本」和「普通版本」给搞得一头雾水吧?尤其是对于刚入