CIFAR-10数据集说明

2023-11-26 22:30
文章标签 数据 说明 cifar

本文主要是介绍CIFAR-10数据集说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

CIFAR-10数据集说明

小白一枚~

  由于正在学习cs231n,第一节课就涉及到用这个数据集进行图像分类。该数据集的页面:http://www.cs.toronto.edu/~kriz/cifar.html

   

/*************************************************************************************************************************************************************/

CIFAR-10和CIFAR-100是带有标签的数据集,都出自于规模更大的一个数据集,他有八千万张小图片(http://groups.csail.mit.edu/vision/TinyImages/。这个是一个大项目,你可以点击那个big map提交自己的标签,可以帮助他们训练让计算机识别物体的模型)

   

  • CIFAR-10

   

  该数据集共有60000张彩色图像,这些图像是32*32,分为10个类,每类6000张图。这里面有50000张用于训练,构成了5个训练批,每一批10000张图;另外10000用于测试,单独构成一批。测试批的数据里,取自10类中的每一类,每一类随机取1000张。抽剩下的就随机排列组成了训练批。注意一个训练批中的各类图像并不一定数量相同,总的来看训练批,每一类都有5000张图。

   

下面这幅图就是列举了10各类,每一类展示了随机的10张图片:

   

   

屏幕剪辑的捕获时间: 2017/12/24 19:31

   

需要说明的是,这10类都是各自独立的,不会出现重叠。

   

数据的下载:

(共有三个版本:python,matlab,binary version 适用于C语言)

http://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz

http://www.cs.toronto.edu/~kriz/cifar-10-matlab.tar.gz

http://www.cs.toronto.edu/~kriz/cifar-10-binary.tar.gz

   

Baseline results (基线结果?还不是很懂)

  你可以在cuda-convert的项目页面上找到此数据集上的一些基线可复制的结果。这个结果是由CNN卷积神经网络得到的。简要的说,在没有数据扩充的情况下,测试误差为18%,反之为11%。

(emmm这段感觉关系不大。。。)

   

数据集布局

   

Python/Matlab 版本

  这两个数据形式是一样的,就以python为例。

  该数据集文件包含data_batch1……data_batch5,和test_batch。他们都是由cPickle库产生的序列化后的对象(关于pickle,移步https://docs.python.org/3/library/pickle.html)。这里给出python2和python3的例程,他可以打开这样的pkl文件,返回一个字典结构的数据:

Python2:

1 def unpickle(file):
2 import cPickle
3 with open(file, 'rb') as fo:
4 dict = cPickle.load(fo)
5 return dict      

Python3:

 

1 def unpickle(file):
2 import pickle
3 with open(file, 'rb') as fo:
4 dict = pickle.load(fo, encoding='bytes')
5 return dict 

 

这样的话,每个batch文件包含一个字典,每个字典包含有:

    • Data

        一个10000*3072的numpy数组(numpy:https://docs.scipy.org/doc/numpy-dev/user/quickstart.html),数据类型是无符号整形uint8。这个数组的每一行存储了32*32大小的彩色图像(32*32*3通道=3072)。前1024个数是red通道,然后分别是green,blue。另外,图像是以行的顺序存储的,也就是说前32个数就是这幅图的像素矩阵的第一行。

         

   

    • labels

        一个范围在0-9的含有10000个数的列表(一维的数组)。第i个数就是第i个图像的类标。

         

  数据集除了6个batch之外,还有一个文件batches.meta。它包含一个python字典对象,内容有:

一个包含10个元素的列表,每一个描述了labels array中每个数字对应类标的名字。比如:label_names[0] == "airplane", label_names[1] == "automobile"

   

   

 /******************************* 

二进制版本

  该版本包含5个训练批data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin,1个测试批test_batch.bin。他们的格式都是:

  

<1 x label><3072 x pixel>
...
<1 x label><3072 x pixel> 

 

来自 <http://www.cs.toronto.edu/~kriz/cifar.html>

   

  也就是说,第一个字节是指类标,在0-9之间。接下来就是3072个字节,内容与上面python版本的的一样。每个文件都有10000这样的3073个字节,没有任何分隔行,所以每个文件都是30730000字节的长度。

    与python版本类似,还有一个文件batches.meta.txt。这是一个ASCII文件,同样是把0-9数字类标和每一类的名字对照起来。

这篇关于CIFAR-10数据集说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/426408

相关文章

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用

Rust中的BoxT之堆上的数据与递归类型详解

《Rust中的BoxT之堆上的数据与递归类型详解》本文介绍了Rust中的BoxT类型,包括其在堆与栈之间的内存分配,性能优势,以及如何利用BoxT来实现递归类型和处理大小未知类型,通过BoxT,Rus... 目录1. Box<T> 的基础知识1.1 堆与栈的分工1.2 性能优势2.1 递归类型的问题2.2

Python使用Pandas对比两列数据取最大值的五种方法

《Python使用Pandas对比两列数据取最大值的五种方法》本文主要介绍使用Pandas对比两列数据取最大值的五种方法,包括使用max方法、apply方法结合lambda函数、函数、clip方法、w... 目录引言一、使用max方法二、使用apply方法结合lambda函数三、使用np.maximum函数

Redis的数据过期策略和数据淘汰策略

《Redis的数据过期策略和数据淘汰策略》本文主要介绍了Redis的数据过期策略和数据淘汰策略,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录一、数据过期策略1、惰性删除2、定期删除二、数据淘汰策略1、数据淘汰策略概念2、8种数据淘汰策略

轻松上手MYSQL之JSON函数实现高效数据查询与操作

《轻松上手MYSQL之JSON函数实现高效数据查询与操作》:本文主要介绍轻松上手MYSQL之JSON函数实现高效数据查询与操作的相关资料,MySQL提供了多个JSON函数,用于处理和查询JSON数... 目录一、jsON_EXTRACT 提取指定数据二、JSON_UNQUOTE 取消双引号三、JSON_KE

Python给Excel写入数据的四种方法小结

《Python给Excel写入数据的四种方法小结》本文主要介绍了Python给Excel写入数据的四种方法小结,包含openpyxl库、xlsxwriter库、pandas库和win32com库,具有... 目录1. 使用 openpyxl 库2. 使用 xlsxwriter 库3. 使用 pandas 库

Spring Boot Actuator使用说明

《SpringBootActuator使用说明》SpringBootActuator是一个用于监控和管理SpringBoot应用程序的强大工具,通过引入依赖并配置,可以启用默认的监控接口,... 目录项目里引入下面这个依赖使用场景总结说明:本文介绍Spring Boot Actuator的使用,关于Spri

SpringBoot定制JSON响应数据的实现

《SpringBoot定制JSON响应数据的实现》本文主要介绍了SpringBoot定制JSON响应数据的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录前言一、如何使用@jsonView这个注解?二、应用场景三、实战案例注解方式编程方式总结 前言

使用Python在Excel中创建和取消数据分组

《使用Python在Excel中创建和取消数据分组》Excel中的分组是一种通过添加层级结构将相邻行或列组织在一起的功能,当分组完成后,用户可以通过折叠或展开数据组来简化数据视图,这篇博客将介绍如何使... 目录引言使用工具python在Excel中创建行和列分组Python在Excel中创建嵌套分组Pyt

在Rust中要用Struct和Enum组织数据的原因解析

《在Rust中要用Struct和Enum组织数据的原因解析》在Rust中,Struct和Enum是组织数据的核心工具,Struct用于将相关字段封装为单一实体,便于管理和扩展,Enum用于明确定义所有... 目录为什么在Rust中要用Struct和Enum组织数据?一、使用struct组织数据:将相关字段绑