YOLOv5结合华为诺亚VanillaNet Block模块

2023-11-25 13:45

本文主要是介绍YOLOv5结合华为诺亚VanillaNet Block模块,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述

🗝️YOLOv5实战宝典--星级指南:从入门到精通,您不可错过的技巧

  -- 聚焦于YOLO的 最新版本对颈部网络改进、添加局部注意力、增加检测头部,实测涨点

💡 深入浅出YOLOv5:我的专业笔记与技术总结

  -- YOLOv5轻松上手, 适用技术小白,文章代码齐全,仅需 一键train,解决 YOLOv5的技术突破和创新潜能

❤️ YOLOv5创新攻略:突破技术瓶颈,激发AI新潜能"

   -- 指导独特且专业的分析, 也支持对YOLOv3、YOLOv4、YOLOv8等网络的修改

🎈 改进YOLOv5📖 ,改进点包括:    替换多种骨干网络/轻量化网络, 添加多种注意力包含自注意力/上下文注意力/自顶向下注意力机制/空间通道注意力/,设计不同的网络结构,助力涨点!!!

在这里插入图片描述

YOLOv5结合华为诺亚VanillaNet Block模块

  • 介绍
  • 核心代码
  • 加入YOLOv5
  • yaml文件:
  • 运行结果

论文: VanillaNet: the Power of Minimalism in
Deep Learning
代码: https://link.zhihu.com/?target=https%3A//github.com/huawei-noah/VanillaNet
在这里插入图片描述

介绍

  基础模型的设计哲学往往遵循“更多即更好”的原则,在计算机视觉和自然语言处理领域取得的显著成就中得到了验证。尽管如此,对于Transformer模型而言,随之而来的优化挑战和固有的复杂性也促使了向更简洁设计的转变。

  本研究引入了VanillaNet,一种在设计上追求简洁性的神经网络架构。VanillaNet避免了复杂的构建如高深度网络结构、捷径连接和自注意力机制,呈现出一种令人耳目一新的简明强大。它的每一层都经过精心设计,简洁且直接,训练后的非线性激活函数被精简,以还原至最初的简洁结构。

  VanillaNet以其对复杂性的挑战克服,成为资源受限环境下的理想选择,其易于理解和简化的构架开启了高效部署的新可能。广泛的实验结果验证了VanillaNet在图像分类、目标检测和语义分割等多项任务中可与知名的深度网络和视觉Transformer相媲美的性能,彰显了极简主义在深度学习中的潜力。VanillaNet的创新之路预示着重新定义行业格局和挑战传统模型的巨大潜力,为简洁而有效的模型设计铺开了全新的道路。

在这里插入图片描述
在这里插入图片描述
  为了解决多头自注意力(MHSA)在可扩展性方面的问题,先前的研究提出了各种稀疏注意力机制,其中查询只关注有限的键值对,而非全部。通常依赖于静态的手工设计模式或在所有查询之间共享键值对的采样子集,缺乏自适应性和独立性。

  本研究提出了VanillaNet,一种简单而高效的神经网络架构,它采用了几层卷积层,去除了所有分支,甚至包括捷径连接。通过调整VanillaNets中的层数来构建一系列网络。VanillaNet-9在保持79.87%准确率的同时,将推理速度降至2.91ms,远超ResNet-50和ConvNextV2-P。

  令人惊讶的成果突显了VanillaNet在实时处理任务中的潜力。进一步扩展了通道数量和池化大小,从而得到了VanillaNet-13-1.5׆,在ImageNet上达到了83.11%的Top-1准确率。这表明,通过简单的扩展,VanillaNets可以实现与深层网络相当的性能。不同架构的深度与推理速度的对比显示,网络的深度而非参数数量与推理速度紧密相关,强调了简单和浅层网络在实时处理任务中的巨大潜力。VanillaNet在所有考察的架构中实现了最优的速度与准确度的平衡,特别是在GPU延迟较低的情况下,表明了在充分计算能力支持下VanillaNet的卓越性🍀。

核心代码

#Copyright (C) 2023. Huawei Technologies Co., Ltd. All rights reserved.#This program is free software; you can redistribute it and/or modify it under the terms of the MIT License.#This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the MIT License for more details.import torch
import torch.nn as nn
import torch.nn.functional as F
from timm.models.layers import weight_init, DropPath
from timm.models.registry import register_modelclass activation(nn.ReLU):def __init__(self, dim, act_num=3, deploy=False):super(activation, self).__init__()self.deploy = deployself.weight = torch.nn.Parameter(torch.randn(dim, 1, act_num*2 + 1, act_num*2 + 1))self.bias = Noneself.bn = nn.BatchNorm2d(dim, eps=1e-6)self.dim = dimself.act_num = act_numweight_init.trunc_normal_(self.weight, std=.02)def forward(self, x):if self.deploy:return torch.nn.functional.conv2d(super(activation, self).forward(x), self.weight, self.bias, padding=(self.act_num*2 + 1)//2, groups=self.dim)else:return self.bn(torch.nn.functional.conv2d(super(activation, self).forward(x),self.weight, padding=(self.act_num*2 + 1)//2, groups=self.dim))def _fuse_bn_tensor(self, weight, bn):kernel = weightrunning_mean = bn.running_meanrunning_var = bn.running_vargamma = bn.weightbeta = bn.biaseps = bn.epsstd = (running_var + eps).sqrt()t = (gamma / std).reshape(-1, 1, 1, 1)return kernel * t, beta + (0 - running_mean) * gamma / stddef switch_to_deploy(self):kernel, bias = self._fuse_bn_tensor(self.weight, self.bn)self.weight.data = kernelself.bias = torch.nn.Parameter(torch.zeros(self.dim))self.bias.data = biasself.__delattr__('bn')self.deploy = Trueclass Block(nn.Module):def __init__(self, dim, dim_out, act_num=3, stride=2, deploy=False, ada_pool=None):super().__init__()self.act_learn = 1self.deploy = deployif self.deploy:self.conv = nn.Conv2d(dim, dim_out, kernel_size=1)else:self.conv1 = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=1),nn.BatchNorm2d(dim, eps=1e-6),)self.conv2 = nn.Sequential(nn.Conv2d(dim, dim_out, kernel_size=1),nn.BatchNorm2d(dim_out, eps=1e-6))if not ada_pool:self.pool = nn.Identity() if stride == 1 else nn.MaxPool2d(stride)else:self.pool = nn.Identity() if stride == 1 else nn.AdaptiveMaxPool2d((ada_pool, ada_pool))self.act = activation(dim_out, act_num)def forward(self, x):if self.deploy:x = self.conv(x)else:x = self.conv1(x)x = torch.nn.functional.leaky_relu(x,self.act_learn)x = self.conv2(x)x = self.pool(x)x = self.act(x)return xdef _fuse_bn_tensor(self, conv, bn):kernel = conv.weightbias = conv.biasrunning_mean = bn.running_meanrunning_var = bn.running_vargamma = bn.weightbeta = bn.biaseps = bn.epsstd = (running_var + eps).sqrt()t = (gamma 

这篇关于YOLOv5结合华为诺亚VanillaNet Block模块的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/423914

相关文章

Python结合requests和Cheerio处理网页内容的操作步骤

《Python结合requests和Cheerio处理网页内容的操作步骤》Python因其简洁明了的语法和强大的库支持,成为了编写爬虫程序的首选语言之一,requests库是Python中用于发送HT... 目录一、前言二、环境搭建三、requests库的基本使用四、Cheerio库的基本使用五、结合req

多模块的springboot项目发布指定模块的脚本方式

《多模块的springboot项目发布指定模块的脚本方式》该文章主要介绍了如何在多模块的SpringBoot项目中发布指定模块的脚本,作者原先的脚本会清理并编译所有模块,导致发布时间过长,通过简化脚本... 目录多模块的springboot项目发布指定模块的脚本1、不计成本地全部发布2、指定模块发布总结多模

Python中构建终端应用界面利器Blessed模块的使用

《Python中构建终端应用界面利器Blessed模块的使用》Blessed库作为一个轻量级且功能强大的解决方案,开始在开发者中赢得口碑,今天,我们就一起来探索一下它是如何让终端UI开发变得轻松而高... 目录一、安装与配置:简单、快速、无障碍二、基本功能:从彩色文本到动态交互1. 显示基本内容2. 创建链

Node.js 中 http 模块的深度剖析与实战应用小结

《Node.js中http模块的深度剖析与实战应用小结》本文详细介绍了Node.js中的http模块,从创建HTTP服务器、处理请求与响应,到获取请求参数,每个环节都通过代码示例进行解析,旨在帮... 目录Node.js 中 http 模块的深度剖析与实战应用一、引言二、创建 HTTP 服务器:基石搭建(一

你的华为手机升级了吗? 鸿蒙NEXT多连推5.0.123版本变化颇多

《你的华为手机升级了吗?鸿蒙NEXT多连推5.0.123版本变化颇多》现在的手机系统更新可不仅仅是修修补补那么简单了,华为手机的鸿蒙系统最近可是动作频频,给用户们带来了不少惊喜... 为了让用户的使用体验变得很好,华为手机不仅发布了一系列给力的新机,还在操作系统方面进行了疯狂的发力。尤其是近期,不仅鸿蒙O

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

python中的与时间相关的模块应用场景分析

《python中的与时间相关的模块应用场景分析》本文介绍了Python中与时间相关的几个重要模块:`time`、`datetime`、`calendar`、`timeit`、`pytz`和`dateu... 目录1. time 模块2. datetime 模块3. calendar 模块4. timeit

Python模块导入的几种方法实现

《Python模块导入的几种方法实现》本文主要介绍了Python模块导入的几种方法实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学... 目录一、什么是模块?二、模块导入的基本方法1. 使用import整个模块2.使用from ... i

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于