对称二叉树oblivious decision tree的简单实现python

2023-11-25 00:59

本文主要是介绍对称二叉树oblivious decision tree的简单实现python,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、详情

可参见论文《BDT: Gradient Boosted Decision Tables for High Accuracy and Scoring Efficiency》

1.对称树也叫做决策表,每一层使用相同的分裂条件。
在这里插入图片描述

2.决策表的紧凑表示,这种表示会导致非常小的内存占用,并使其对缓存相当友好。
在这里插入图片描述
3.损失函数
在这里插入图片描述
4.具体实现的时候,采样下面的结构表示决策表,可以加速计算Gain。
在这里插入图片描述
5.计算Gain
在这里插入图片描述
6.构建决策表
在这里插入图片描述

二、代码

本例子较为简单,只是实现了回归的Decision Tables,而且没有包括反拟合算法。

import pandas as pd
import numpy as np
import sklearn.datasets as datasets
from numpy import *
import copy as cp
import sklearn.metrics as metrics
from sklearn.model_selection import train_test_split#特征值和原本索引结构
class Sample_index(object):def __init__(self):self.featureIndex = []self.feature_values = []self.sample_index = []#决策表的类
class Decision_table(object):def __init__(self):self.features = []self.cuts = []self.predictions = []#为每个特征的特征值遍历样本索引
def visit_feature_value_sample_index(X_train):m, n = X_train.shapefeature_sample_index = Sample_index() #每个特征的特征值对应的样本索引for feaIndex in range(n):  # 遍历特征feature_sample_index.featureIndex.append(feaIndex)feature_values = np.sort(list(set(X_train[:, feaIndex])))[::-1].tolist() # 将特征值按照降序排列feature_sample_index.feature_values.append(feature_values)value_sample_index_list = []for value in feature_values:  # 遍历数据集,生成对于特征值的样本索引sample_index_list = []for j in np.where(X_train[:, feaIndex] == value):sample_index_list.append(j)value_sample_index_list.append(sample_index_list)feature_sample_index.sample_index.append(value_sample_index_list)return feature_sample_index#选择最好的分裂点
def choose_best_feature(y_train, depth, Sample_index, Partition_label, Count, Sum, bestGain):bestGain = bestGain #最大的熵增c = None #特征 x_j的最好划分特征值best_feature_index = None #最好划分的特征 x_j索引best_count = None #落入每个分区的样本数best_sum = None #落入每个分区的样本标签值之和best_partition_label = None #每个样本对应的分区索引sample_index = Sample_index#计算特征x_j在第d次划分时的收益for feature_index in sample_index.featureIndex:count = cp.deepcopy(Count)  # 存储分区 k 中的样本点数sum = cp.deepcopy(Sum)  # 存储分区k中样本点的标签的总和partition_label = cp.deepcopy(Partition_label)  # 记录每个样本对应的分区索引for value_index in range(len(sample_index.feature_values[feature_index])):  # 遍历特征if value_index != 0:for data_index in sample_index.sample_index[feature_index][value_index-1]:#遍历特征值下的样本集索引count[partition_label[data_index].astype(np.int32)] = count[partition_label[data_index].astype(np.int32)] -1sum[partition_label[data_index].astype(np.int32)] = sum[partition_label[data_index].astype(np.int32)] - y_train[data_index]count[partition_label[data_index].astype(np.int32) - 1] = count[partition_label[data_index].astype(np.int32) - 1] + 1sum[partition_label[data_index].astype(np.int32) - 1] = sum[partition_label[data_index].astype(np.int32) - 1] + y_train[data_index]partition_label[data_index] = partition_label[data_index] -1gain = 0for k in range(np.power(2, depth)):if count[k] != 0:gain = gain + (sum[k] * sum[k]) / count[k]if gain > bestGain:bestGain = gainc = list(sample_index.feature_values[feature_index])[value_index]best_feature_index = feature_indexbest_count = cp.deepcopy(count)best_sum = cp.deepcopy(sum)best_partition_label = cp.deepcopy(partition_label)return best_feature_index, c, bestGain, best_count, best_sum, best_partition_label#根据partition_label来统计count和sum的数量
def create_count_sum(partition_label, y_train, depth):partition_num = np.power(2, depth)count = np.zeros([partition_num])sum = np.zeros([partition_num])for i in range(partition_num):count[i] = np.sum(partition_label == i)for j in np.where(partition_label == i)[0]:sum[i] += y_train[j]return count, sum#计算分区的值=叶子节点的值
def get_leafs(count, sum):partition_num = len(sum)predictions = np.zeros([partition_num])for i in range(partition_num):if count[i] != 0:predictions[i] = sum[i] / count[i]return predictions.tolist()#建立决策表
def generate_decision_table(X_train, y_train, sample_index, depth = 2):m, n = X_train.shapecount = np.zeros([2])  # 存储分区 k 中的样本点数sum = np.zeros([2])  # 存储分区k中样本点的标签的总和sample_index = sample_indexGain = -inf  # 最大的熵增#对count,sum,partition_label进行初始化,对于第一次分裂,所有样本都在第1分区count[1] = msum[1] = y_train.sum()partition_label = np.ones([m])  # 记录每个样本对应的分区索引dt = Decision_table() #初始化决策表#贪婪的对决策表找到 其在拟合前 <= depth 个分裂点for t in range(depth):best_feature_index, best_value, bestGain, best_count, best_sum, best_partition_label = choose_best_feature(y_train, t+1, sample_index, partition_label, count, sum, Gain)if best_feature_index == None:breakfeature_index = cp.deepcopy(best_feature_index)value = cp.deepcopy(best_value)partition_label = cp.deepcopy(best_partition_label)count = cp.deepcopy(best_count)sum = cp.deepcopy(best_sum)Gain = bestGaindt.features.append(feature_index)dt.cuts.append(value)if t != depth-1:for i in range(len(partition_label)): #更新下一次分割的样本分区分布partition_label[i] = 2 * partition_label[i] + 1count, sum = create_count_sum(partition_label, y_train, t + 2)#backfiting 这部分的论文内容不太看得明白#叶子的值/每个分区的样本值dt.predictions = get_leafs(count, sum)return dt#用训练好的模型来预测测试集
def tree_table_predict(datasets, tree_table):m, n = datasets.shapedepth = len(tree_table.features)y_hat = np.zeros([m], dtype=int)j = 0for row in datasets:partition_label2 = np.zeros([depth], dtype=int)for i in range(depth):feature_index = int(tree_table.features[i])if float(row[feature_index]) <= tree_table.cuts[i]:partition_label2[i] = 1else:partition_label2[i] = 0#二进制转十进制partition_label2 = partition_label2.tolist()partition_label2 = ''.join(str(i) for i in partition_label2)partition_label10 = int(partition_label2, 2)y_hat[j] = tree_table.predictions[partition_label10]j += 1return y_hatif __name__ == '__main__':#准备数据boston = datasets.load_boston()x = boston['data']y = boston['target']feature_name = list(range(0, 13))#划分数据集X_train, X_test, y_train, y_test = train_test_split(x, y, test_size=0.2)#初始化每个特征值下的样本索引sample_index = visit_feature_value_sample_index(X_train)#建树tree_table = generate_decision_table(X_train, y_train, sample_index, depth=3)print("true_depth= ", len(tree_table.features))#预测y_hat = tree_table_predict(X_test, tree_table)# print("y_hat=", y_hat)#评估MAE = metrics.mean_absolute_error(y_test, y_hat)print("MAE= ", MAE)

这篇关于对称二叉树oblivious decision tree的简单实现python的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422875

相关文章

Python调用Orator ORM进行数据库操作

《Python调用OratorORM进行数据库操作》OratorORM是一个功能丰富且灵活的PythonORM库,旨在简化数据库操作,它支持多种数据库并提供了简洁且直观的API,下面我们就... 目录Orator ORM 主要特点安装使用示例总结Orator ORM 是一个功能丰富且灵活的 python O

Java实现检查多个时间段是否有重合

《Java实现检查多个时间段是否有重合》这篇文章主要为大家详细介绍了如何使用Java实现检查多个时间段是否有重合,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录流程概述步骤详解China编程步骤1:定义时间段类步骤2:添加时间段步骤3:检查时间段是否有重合步骤4:输出结果示例代码结语作

Python使用国内镜像加速pip安装的方法讲解

《Python使用国内镜像加速pip安装的方法讲解》在Python开发中,pip是一个非常重要的工具,用于安装和管理Python的第三方库,然而,在国内使用pip安装依赖时,往往会因为网络问题而导致速... 目录一、pip 工具简介1. 什么是 pip?2. 什么是 -i 参数?二、国内镜像源的选择三、如何

使用C++实现链表元素的反转

《使用C++实现链表元素的反转》反转链表是链表操作中一个经典的问题,也是面试中常见的考题,本文将从思路到实现一步步地讲解如何实现链表的反转,帮助初学者理解这一操作,我们将使用C++代码演示具体实现,同... 目录问题定义思路分析代码实现带头节点的链表代码讲解其他实现方式时间和空间复杂度分析总结问题定义给定

Java覆盖第三方jar包中的某一个类的实现方法

《Java覆盖第三方jar包中的某一个类的实现方法》在我们日常的开发中,经常需要使用第三方的jar包,有时候我们会发现第三方的jar包中的某一个类有问题,或者我们需要定制化修改其中的逻辑,那么应该如何... 目录一、需求描述二、示例描述三、操作步骤四、验证结果五、实现原理一、需求描述需求描述如下:需要在

如何使用Java实现请求deepseek

《如何使用Java实现请求deepseek》这篇文章主要为大家详细介绍了如何使用Java实现请求deepseek功能,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1.deepseek的api创建2.Java实现请求deepseek2.1 pom文件2.2 json转化文件2.2

python使用fastapi实现多语言国际化的操作指南

《python使用fastapi实现多语言国际化的操作指南》本文介绍了使用Python和FastAPI实现多语言国际化的操作指南,包括多语言架构技术栈、翻译管理、前端本地化、语言切换机制以及常见陷阱和... 目录多语言国际化实现指南项目多语言架构技术栈目录结构翻译工作流1. 翻译数据存储2. 翻译生成脚本

C++初始化数组的几种常见方法(简单易懂)

《C++初始化数组的几种常见方法(简单易懂)》本文介绍了C++中数组的初始化方法,包括一维数组和二维数组的初始化,以及用new动态初始化数组,在C++11及以上版本中,还提供了使用std::array... 目录1、初始化一维数组1.1、使用列表初始化(推荐方式)1.2、初始化部分列表1.3、使用std::

如何通过Python实现一个消息队列

《如何通过Python实现一个消息队列》这篇文章主要为大家详细介绍了如何通过Python实现一个简单的消息队列,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录如何通过 python 实现消息队列如何把 http 请求放在队列中执行1. 使用 queue.Queue 和 reque

Python如何实现PDF隐私信息检测

《Python如何实现PDF隐私信息检测》随着越来越多的个人信息以电子形式存储和传输,确保这些信息的安全至关重要,本文将介绍如何使用Python检测PDF文件中的隐私信息,需要的可以参考下... 目录项目背景技术栈代码解析功能说明运行结php果在当今,数据隐私保护变得尤为重要。随着越来越多的个人信息以电子形