Hanoi 双塔问题

2023-11-24 22:10
文章标签 问题 双塔 hanoi

本文主要是介绍Hanoi 双塔问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Hanoi 双塔问题 ⁡ \operatorname{Hanoi\ 双塔问题} Hanoi 

题目链接: luogu P1096 ⁡ \operatorname{luogu\ P1096} luogu P1096

题目

给定 A A A B B B C C C 三根足够长的细柱,在 A A A 柱上放有 2 n 2n 2n 个中间有孔的圆盘,共有 n n n 个不同的尺寸,每个尺寸都有两个相同的圆盘,注意这两个圆盘是不加区分的(下图为 n = 3 n=3 n=3 的情形)。
在这里插入图片描述
现要将这些圆盘移到 C C C 柱上,在移动过程中可放在 B B B 柱上暂存。要求:

(1)每次只能移动一个圆盘;

(2) A A A B B B C C C 三根细柱上的圆盘都要保持上小下大的顺序;

任务:设 A n A_n An 2 n 2n 2n 个圆盘完成上述任务所需的最少移动次数,对于输入的 n n n ,输出 A n A_n An

输入

一个正整数 n n n ,表示在 A A A 柱上放有 2 n 2n 2n 个圆盘。

输出

一个正整数, 为完成上述任务所需的最少移动次数 A n A_n An

样例输入1

1

样例输出1

2

样例输入2

2

样例输出2

6

数据范围

对于 50 % 50\% 50% 的数据, 1 ≤ n ≤ 25 1 \le n \le 25 1n25

对于 100 % 100\% 100% 的数据, 1 ≤ n ≤ 200 1 \le n \le 200 1n200

提示

设法建立 A n A_n An A n − 1 A_{n-1} An1 的递推关系式。

思路

这道题就是普通 dp 加普通高精。

我们可以知道,汉诺塔就是 f [ i ] = f [ i − 1 ] ∗ 2 + 1 f[i] = f[i - 1] * 2 + 1 f[i]=f[i1]2+1 ,那每个地方多了一个相同的圆盘,那其实可以把这两个圆盘看成一个,然后原来的移动一次就是这里的移动两次。(因为两个盘子都要移动)
那就是在输出之前在把答案乘二再输出。

(不会吧不会吧,不会真有人不知道要用高精吧)

代码

#include<cstdio>
#define ll long longusing namespace std;ll n, f[201][10001], ans[10001];int main() {scanf("%lld", &n);//读入f[1][0] = 1;//初始化f[1][1] = 1;for (int i = 2; i <= n; i++) {f[i][0] = f[i - 1][0];//高精乘2for (int j = 1; j <= f[i][0]; j++)f[i][j] = f[i - 1][j] * 2;f[i][1]++;//加上1for (int j = 1; j <= f[i][0]; j++) {f[i][j + 1] += f[i][j] / 10;f[i][j] %= 10;}while (f[i][f[i][0] + 1]) {f[i][0]++;f[i][f[i][0] + 1] += f[i][f[i][0]] / 10;f[i][f[i][0]] %= 10;}}ans[0] = f[n][0];//高精乘2for (int j = 1; j <= ans[0]; j++)ans[j] = f[n][j] * 2;for (int j = 1; j <= ans[0]; j++) {ans[j + 1] += ans[j] / 10;ans[j] %= 10;}while (ans[ans[0] + 1]) {ans[0]++;ans[ans[0] + 1] += ans[ans[0]] / 10;ans[ans[0]] %= 10;}for (int i = ans[0]; i >= 1; i--)//输出printf("%d", ans[i]);return 0;
}

这篇关于Hanoi 双塔问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422635

相关文章

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu

MySQL新增字段后Java实体未更新的潜在问题与解决方案

《MySQL新增字段后Java实体未更新的潜在问题与解决方案》在Java+MySQL的开发中,我们通常使用ORM框架来映射数据库表与Java对象,但有时候,数据库表结构变更(如新增字段)后,开发人员可... 目录引言1. 问题背景:数据库与 Java 实体不同步1.1 常见场景1.2 示例代码2. 不同操作

如何解决mysql出现Incorrect string value for column ‘表项‘ at row 1错误问题

《如何解决mysql出现Incorrectstringvalueforcolumn‘表项‘atrow1错误问题》:本文主要介绍如何解决mysql出现Incorrectstringv... 目录mysql出现Incorrect string value for column ‘表项‘ at row 1错误报错

如何解决Spring MVC中响应乱码问题

《如何解决SpringMVC中响应乱码问题》:本文主要介绍如何解决SpringMVC中响应乱码问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC最新响应中乱码解决方式以前的解决办法这是比较通用的一种方法总结Spring MVC最新响应中乱码解

pip无法安装osgeo失败的问题解决

《pip无法安装osgeo失败的问题解决》本文主要介绍了pip无法安装osgeo失败的问题解决,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 进入官方提供的扩展包下载网站寻找版本适配的whl文件注意:要选择cp(python版本)和你py

解决Java中基于GeoTools的Shapefile读取乱码的问题

《解决Java中基于GeoTools的Shapefile读取乱码的问题》本文主要讨论了在使用Java编程语言进行地理信息数据解析时遇到的Shapefile属性信息乱码问题,以及根据不同的编码设置进行属... 目录前言1、Shapefile属性字段编码的情况:一、Shp文件常见的字符集编码1、System编码

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Redis解决缓存击穿问题的两种方法

《Redis解决缓存击穿问题的两种方法》缓存击穿问题也叫热点Key问题,就是⼀个被高并发访问并且缓存重建业务较复杂的key突然失效了,无数的请求访问会在瞬间给数据库带来巨大的冲击,本文给大家介绍了Re... 目录引言解决办法互斥锁(强一致,性能差)逻辑过期(高可用,性能优)设计逻辑过期时间引言缓存击穿:给

Java程序运行时出现乱码问题的排查与解决方法

《Java程序运行时出现乱码问题的排查与解决方法》本文主要介绍了Java程序运行时出现乱码问题的排查与解决方法,包括检查Java源文件编码、检查编译时的编码设置、检查运行时的编码设置、检查命令提示符的... 目录一、检查 Java 源文件编码二、检查编译时的编码设置三、检查运行时的编码设置四、检查命令提示符

Jackson库进行JSON 序列化时遇到了无限递归(Infinite Recursion)的问题及解决方案

《Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursion)的问题及解决方案》使用Jackson库进行JSON序列化时遇到了无限递归(InfiniteRecursi... 目录解决方案‌1. 使用 @jsonIgnore 忽略一个方向的引用2. 使用 @JsonManagedR