本文主要是介绍蓝桥杯 有理数类,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
蓝桥杯 有理数类
标题:有理数类
有理数就是可以表示为两个整数的比值的数字。一般情况下,我们用近似的小数表示。但有些时候,不允许出现误差,必须用两个整数来表示一个有理数。
这时,我们可以建立一个“有理数类”,下面的代码初步实现了这个目标。为了简明,它只提供了加法和乘法运算。
class Rational
{private long ra;private long rb;private long gcd(long a, long b){if(b==0) return a;return gcd(b,a%b);}public Rational(long a, long b){ra = a;rb = b;long k = gcd(ra,rb);if(k>1){ //需要约分ra /= k;rb /= k;}}// 加法public Rational add(Rational x){return ________________________________________; //填空位置}// 乘法public Rational mul(Rational x){return new Rational(ra*x.ra, rb*x.rb);}public String toString(){if(rb==1) return "" + ra;return ra + "/" + rb;}
}
使用该类的示例:
Rational a = new Rational(1,3);
Rational b = new Rational(1,6);
Rational c = a.add(b);
System.out.println(a + "+" + b + "=" + c);
请分析代码逻辑,并推测划线处的代码,通过网页提交
注意:仅把缺少的代码作为答案,千万不要填写多余的代码、符号或说明文字!!
public class 有理数类 {public static void main(String[] args) {Rational a = new Rational(1,3);Rational b = new Rational(1,6);Rational c = a.add(b);System.out.println(a + "+" + b + "=" + c);}static class Rational {private long ra;private long rb;private long gcd(long a, long b) {if (b == 0) return a;return gcd(b, a % b);}public Rational(long a, long b) {ra = a;rb = b;long k = gcd(ra, rb);if (k > 1) { //需要约分ra /= k;rb /= k;}}// 加法public Rational add(Rational x) {return new Rational(this.ra * x.rb + x.ra * this.rb, this.rb * x.rb); //填空位置}// 乘法public Rational mul(Rational x) {return new Rational(ra * x.ra, rb * x.rb);}public String toString() {if (rb == 1) return "" + ra;return ra + "/" + rb;}}}
这篇关于蓝桥杯 有理数类的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!