使用MapReduce求出各年销售笔数、各年销售总额

2023-11-24 20:20

本文主要是介绍使用MapReduce求出各年销售笔数、各年销售总额,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1)将上面的数据文件上传到hdfs

hdfs dfs -put sales.csv /input/

2)采用Eclipse/IDEA创建一个Maven工程,同时修改pom.xml文件,增加dependencies,/dependencies、build,/build节点,内容如下:

    <dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-common</artifactId><version>2.7.7</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-hdfs</artifactId><version>2.7.7</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-mapreduce-client-core</artifactId><version>2.7.7</version></dependency><dependency><groupId>org.apache.hadoop</groupId><artifactId>hadoop-client</artifactId><version>2.7.7</version></dependency>
    <plugins><plugin><groupId>org.apache.maven.plugins</groupId><artifactId>maven-jar-plugin</artifactId><version>2.6</version><configuration><archive><manifest><!-- main()所在的类,注意修改 --><mainClass>org.example.SoldMain</mainClass></manifest></archive></configuration></plugin></plugins>

3)开始开发java代码,需要4个类:

首先是主输出类SoldMain(代码如下):

package org.example;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
public class SoldMain {public static void main(String[] args) throws Exception {
//1. 创建一个job和任务入口(指定主类)
Job job = Job.getInstance(new Configuration());job.setJarByClass(SoldMain.class);//2. 指定job的mapper和输出的类型<k2 v2>
job.setMapperClass(SoldMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Sold.class);
//3. 指定job的reducer和输出的类型<k4  v4>job.setReducerClass(SoldReduce.class);job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
//4.指定job的输入和输出路径
FileInputFormat.setInputPaths(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
//5. 执行jobjob.waitForCompletion(true);}
}

然后是SoldMapper类(代码如下):

package org.example;
import org.apache.commons.lang.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import java.io.IOException;
public class SoldMapper extends Mapper<LongWritable, Text, Text, Sold> {@Override
protected void map(LongWritable k1, Text v1,
Context context)
throws IOException, InterruptedException {//字段名 prod_id,cust_id,time,channel_id,promo_id,quantity_sold,amount_sold
//数据类型:Int,Int,Date, Int,Int ,Int ,float(10,2),
//数据: 13,987,1998-01-10,3,999,1,1232.16
String data = v1.toString();
String[] words = data.split(",");
//数据: t1=987,1998-01-10,3,999,1,1232.16String t1 = StringUtils.substringAfter(data, ",");
//数据: t2=1998-01-10,3,999,1,1232.16 
String t2 = StringUtils.substringAfter(t1, ",");
//取年份为偏移量,数据: words2[0]=1998,words2[1]=01,words2[2]=10,3,999,1,1232.16
String[] words2 = t2.split("-");
//        StringUtils.substringAfter("dskeabcedeh", "e");
//        /*结果是:abcedeh*/Sold sold = new Sold();sold.setTime(words[2]);//数组word[]
sold.setQuantity_sold(Integer.parseInt(words[5]));
sold.setAmount_sold(Float.valueOf(words[6]));
context.write(new Text(words2[0]), sold);//数组word2[],word2[0]代表年份作为k2}
}

接着是SoldReduce类(代码如下):

package org.example;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
import java.io.IOException;
public class SoldReduce extends Reducer<Text, Sold, Text, Text> {protected void reduce(Text k3, Iterable<Sold> v3, Context context) throws IOException, InterruptedException {
int total1 = 0;
float total2 = 0;
for (Sold sold : v3) {
total1 = total1 + sold.getQuantity_sold();
total2 = total2 + sold.getAmount_sold();
}
String total = "销售笔数:" + Integer.toString(total1) + "," + "销售总额:" + Float.toString(total2);
context.write(k3, new Text(total));
}
}

最后是Sold类(代码如下):

package org.example;
import org.apache.hadoop.io.Writable;
import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;
public class Sold implements Writable {
//字段名 prod_id,cust_id,time,channel_id,promo_id,quantity_sold,amount_sold//数据类型:Int,Int,Date, Int,Int ,Int ,float(10,2),//数据: 13, 987, 1998/1/10, 3, 999,1, 1232.16
//由以上定义变量
private int prod_id;
private int cust_id;
private String time;
private int channel_id;
private int promo_id;
private int quantity_sold;
private float amount_sold;//奖金
//序列化方法:将java对象转化为可跨机器传输数据流(二进制串/字节)的一种技术
public void write(DataOutput out) throws IOException {out.writeInt(this.prod_id);out.writeInt(this.cust_id);out.writeUTF(this.time);out.writeInt(this.channel_id);out.writeInt(this.promo_id);out.writeInt(this.quantity_sold);out.writeFloat(this.amount_sold);
}
//反序列化方法:将可跨机器传输数据流(二进制串)转化为java对象的一种技术public void readFields(DataInput in) throws IOException {this.prod_id = in.readInt();this.cust_id = in.readInt();this.time = in.readUTF();this.channel_id = in.readInt();this.promo_id = in.readInt();this.quantity_sold = in.readInt();this.amount_sold = in.readFloat();}
public int getProd_id() {return prod_id;}public void setProd_id(int prod_id) {this.prod_id = prod_id;}public int getCust_id() {return cust_id;}public void setCust_id(int cust_id) {this.cust_id = cust_id;
}public String getTime() {return time;
}
public void setTime(String time) {
this.time = time;
}
public int getChannel_id() {return channel_id;
}public void setChannel_id(int channel_id) {this.channel_id = channel_id;}
public int getPromo_id() {return promo_id;
}public void setPromo_id(int promo_id) {this.promo_id = promo_id;
}public int getQuantity_sold() {
return quantity_sold;}
public void setQuantity_sold(int quantity_sold) {
this.quantity_sold = quantity_sold;}
public float getAmount_sold() {
return amount_sold;
}public void setAmount_sold(float amount_sold) {this.amount_sold = amount_sold;}
}

4)使用命令(如下)打包:

mvn clean package

5)将jar包通过xftp传输到linux下,在hadoop环境运行jar包,命令如下:

hadoop jar annualTotal-0.0.1-SNAPSHOT.jar  /input/sales.csv  /output/sales

jar包名和输入输出名请自行修改
6)查看执行结果(命令如下):

hdfs dfs -cat /output/sales/part-r-00000

输出路径请自行查看
结果

这篇关于使用MapReduce求出各年销售笔数、各年销售总额的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/422521

相关文章

Android kotlin中 Channel 和 Flow 的区别和选择使用场景分析

《Androidkotlin中Channel和Flow的区别和选择使用场景分析》Kotlin协程中,Flow是冷数据流,按需触发,适合响应式数据处理;Channel是热数据流,持续发送,支持... 目录一、基本概念界定FlowChannel二、核心特性对比数据生产触发条件生产与消费的关系背压处理机制生命周期

java使用protobuf-maven-plugin的插件编译proto文件详解

《java使用protobuf-maven-plugin的插件编译proto文件详解》:本文主要介绍java使用protobuf-maven-plugin的插件编译proto文件,具有很好的参考价... 目录protobuf文件作为数据传输和存储的协议主要介绍在Java使用maven编译proto文件的插件

SpringBoot线程池配置使用示例详解

《SpringBoot线程池配置使用示例详解》SpringBoot集成@Async注解,支持线程池参数配置(核心数、队列容量、拒绝策略等)及生命周期管理,结合监控与任务装饰器,提升异步处理效率与系统... 目录一、核心特性二、添加依赖三、参数详解四、配置线程池五、应用实践代码说明拒绝策略(Rejected

C++ Log4cpp跨平台日志库的使用小结

《C++Log4cpp跨平台日志库的使用小结》Log4cpp是c++类库,本文详细介绍了C++日志库log4cpp的使用方法,及设置日志输出格式和优先级,具有一定的参考价值,感兴趣的可以了解一下... 目录一、介绍1. log4cpp的日志方式2.设置日志输出的格式3. 设置日志的输出优先级二、Window

Ubuntu如何分配​​未使用的空间

《Ubuntu如何分配​​未使用的空间》Ubuntu磁盘空间不足,实际未分配空间8.2G因LVM卷组名称格式差异(双破折号误写)导致无法扩展,确认正确卷组名后,使用lvextend和resize2fs... 目录1:原因2:操作3:报错5:解决问题:确认卷组名称​6:再次操作7:验证扩展是否成功8:问题已解

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v