武理校赛D题 星际穿越(分层图 + dij堆优化)

2023-11-24 01:50

本文主要是介绍武理校赛D题 星际穿越(分层图 + dij堆优化),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

武理校赛D题

星际穿越(分层图 + dij堆优化)

牛客链接

题意:

给定 N 个点,M 条边,每条边有边权 w,点分为三类,编号为1,2,3。

给定起点和终点且保证起点和终点都是第 3 类点。

求起点到终点的最短路,且路径中需要有一个 (不多不少刚好一个)1 类点和一个 2 类点,通过 1 类点的时间要在通过 2 类点之前。

保证数据无重边,无负环,图连通。

思路:

第一眼看过去类似一个最短路问题,只不过加了限制条件,因此考虑使用最短路解决。

典中典之错误思路:

一开始想到将所有 1 类点都连接一个边权为 0 的超级源点,2 类点同理,这样可以将模型大概简化为:所有三类点 -> 所有一类点 -> 所有二类点 -> 所有三类点,跑三次 dij 找到答案。
在这里插入图片描述
(最后发现这种算法假了qwq)

这种建图无法保证:

局部最优解是全局最优解;

存在 三类点 -> 二类点 -> 一类点 的可能;

正确思路:

建分层图,分三层:

每一层中的三类点都是联通的;

第一层路径包括 3 -> 3,3 -> 1;

从第一层到第二层的路径由 1 -> (第二层的)3 组成;

第二层路径包括 3 -> 3,1 -> 3;

第二层到第三层的路径由 1 -> (第三层的)2,3 -> (第三层的)2 组成;

第三层路径包括 3 -> 3,2 -> 3;

建完图之后只要从第一层的起点跑到第三层的终点,跑一边 dij 即可算出答案。

细节:

三层图,因此 MAXN 和 MAXM 都要开成三倍;
距离初始化时也要初始化到 3 * n;

const int MAXN = 300010;
const int MAXM = 1500010;
for (int i = 1;i <= n * 3 + 2;i++) dis[i] = inf;

剩下没啥细节基本都是模板

完整代码:

#define _CRT_SECURE_NO_WARNINGS
#include<stdio.h>
#include<iostream>
#include<cstring>
#include<algorithm>
#include<map>
#include<vector>
#include<math.h>
#include<queue>
using namespace std;
typedef long long ll;
typedef double dd;
typedef pair<int, int> pii;
typedef pair<dd, dd> pdd;
const int MAXN = 300010;
const int inf = 1e9 + 7;
const int MAXM = 1500010;//dij 模板
struct EDGE {int u, v, w, nxt;
}e[MAXM];
int head[MAXN], cnt, vis[MAXN], dis[MAXN];
struct NODE {int w, now;bool operator < (const NODE& x) const{return w > x.w;}
};
priority_queue<NODE>q;
int n, m, s, t;
int lei[MAXN];void add(int u, int v, int w)
{e[++cnt] = { u,v,w,head[u] };head[u] = cnt;
}void dij()
{for (int i = 1;i <= n * 3 + 2;i++) dis[i] = inf;dis[s] = 0;q.push({ 0,s });while (q.size()){NODE x = q.top();q.pop();int u = x.now;if (vis[u]) continue;vis[u] = 1;for (int i = head[u];i;i = e[i].nxt){int v = e[i].v;if (dis[v] > dis[u] + e[i].w){dis[v] = dis[u] + e[i].w;q.push({ dis[v],v });}}}
}int main()
{scanf("%d%d%d%d", &n, &m, &s, &t);for (int i = 1;i <= n;i++) scanf("%d", &lei[i]);for (int i = 1;i <= m;i++){int u, v, w;scanf("%d%d%d", &u, &v, &w);if (lei[u] == 3 && lei[v] == 3) add(u, v, w), add(u + n, v + n, w), add(u + 2 * n, v + 2 * n, w);//3 -> 3, 每层都建if (lei[u] == 3 && lei[v] == 1) add(u, v + n, w);//3 -> 1, 第一层到第二层的路径if (lei[u] == 3 && lei[v] == 2) add(u + n, v + 2 * n, w);//3 -> 2, 第二层到第三层的路径if (lei[u] == 1 && lei[v] == 2) add(u + n, v + 2 * n, w);//1 -> 2, 第二层到第三层的路径if (lei[u] == 1 && lei[v] == 3) add(u + n, v + n, w);//1 -> 3, 第二层中的路径if (lei[u] == 2 && lei[v] == 3) add(u + 2 * n, v + 2 * n, w);//2 -> 3, 第三层中的路径}dij();if (dis[t + 2 * n] >= inf) printf("-1");//第一层起点到第三层终点的最短路径else printf("%d", dis[t + 2 * n]);
}

总结:

比赛写这题时心态较急,导致没有仔细思考当时的思路是否可行就开始写,导致一直按照错误思路写到最后 20 分钟才在推优的提醒下发现算法写假。
另一原因也是以前没有写过分层图的题目,所以比赛时即便想到可能可以建三层图,却无法确定是否可行,在两种思路中果断选择了错误的思路 (不愧是我)

这篇关于武理校赛D题 星际穿越(分层图 + dij堆优化)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/421058

相关文章

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义

HDFS—存储优化(纠删码)

纠删码原理 HDFS 默认情况下,一个文件有3个副本,这样提高了数据的可靠性,但也带来了2倍的冗余开销。 Hadoop3.x 引入了纠删码,采用计算的方式,可以节省约50%左右的存储空间。 此种方式节约了空间,但是会增加 cpu 的计算。 纠删码策略是给具体一个路径设置。所有往此路径下存储的文件,都会执行此策略。 默认只开启对 RS-6-3-1024k

使用opencv优化图片(画面变清晰)

文章目录 需求影响照片清晰度的因素 实现降噪测试代码 锐化空间锐化Unsharp Masking频率域锐化对比测试 对比度增强常用算法对比测试 需求 对图像进行优化,使其看起来更清晰,同时保持尺寸不变,通常涉及到图像处理技术如锐化、降噪、对比度增强等 影响照片清晰度的因素 影响照片清晰度的因素有很多,主要可以从以下几个方面来分析 1. 拍摄设备 相机传感器:相机传

MySQL高性能优化规范

前言:      笔者最近上班途中突然想丰富下自己的数据库优化技能。于是在查阅了多篇文章后,总结出了这篇! 数据库命令规范 所有数据库对象名称必须使用小写字母并用下划线分割 所有数据库对象名称禁止使用mysql保留关键字(如果表名中包含关键字查询时,需要将其用单引号括起来) 数据库对象的命名要能做到见名识意,并且最后不要超过32个字符 临时库表必须以tmp_为前缀并以日期为后缀,备份

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

从状态管理到性能优化:全面解析 Android Compose

文章目录 引言一、Android Compose基本概念1.1 什么是Android Compose?1.2 Compose的优势1.3 如何在项目中使用Compose 二、Compose中的状态管理2.1 状态管理的重要性2.2 Compose中的状态和数据流2.3 使用State和MutableState处理状态2.4 通过ViewModel进行状态管理 三、Compose中的列表和滚动

构建高性能WEB之HTTP首部优化

0x00 前言 在讨论浏览器优化之前,首先我们先分析下从客户端发起一个HTTP请求到用户接收到响应之间,都发生了什么?知己知彼,才能百战不殆。这也是作为一个WEB开发者,为什么一定要深入学习TCP/IP等网络知识。 0x01 到底发生什么了? 当用户发起一个HTTP请求时,首先客户端将与服务端之间建立TCP连接,成功建立连接后,服务端将对请求进行处理,并对客户端做出响应,响应内容一般包括响应

DAY16:什么是慢查询,导致的原因,优化方法 | undo log、redo log、binlog的用处 | MySQL有哪些锁

目录 什么是慢查询,导致的原因,优化方法 undo log、redo log、binlog的用处  MySQL有哪些锁   什么是慢查询,导致的原因,优化方法 数据库查询的执行时间超过指定的超时时间时,就被称为慢查询。 导致的原因: 查询语句比较复杂:查询涉及多个表,包含复杂的连接和子查询,可能导致执行时间较长。查询数据量大:当查询的数据量庞大时,即使查询本身并不复杂,也可能导致

MySQL 数据优化

MySQL 数据优化的指南 MySQL 数据库优化是一个复杂且重要的过程,它直接影响到系统的性能、可靠性和可扩展性。在处理大量数据或高并发请求时,数据库的优化尤为关键。通过合理的数据库设计、索引使用、查询优化和硬件调优,可以大幅提高 MySQL 的运行效率。本文将从几个主要方面详细介绍 MySQL 的优化技巧,帮助你在实际应用中提升数据库性能。 一、数据库设计优化 1. 数据库的规范化与反规

JavaEE应用的分层模型

不管是经典的JAVAEE架构,还是轻量级JavaEE架构,大致上都可以分为如下几层: 1、Domain Object(领域对象)层:此层由一系列的POJO(Plain Old Java Object)组成,这些对象是该系统的Domain Object,往往包含了各自所需实现的业务逻辑方法。 2、DAO(Data Access Object,数据访问对象)层:此层由一系列的DAO组件组成,这些D