MNN开发环境搬砖记录

2023-11-23 09:30
文章标签 开发 记录 环境 mnn

本文主要是介绍MNN开发环境搬砖记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、钉钉,优酷等20多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。此外,IoT等场景下也有若干应用。

特点

轻量性

  • 针对端侧设备特点深度定制和裁剪,无任何依赖,可以方便地部署到移动设备和各种嵌入式设备中。
  • iOS平台:armv7+arm64静态库大小5MB左右,链接生成可执行文件增加大小620KB左右,metallib文件600KB左右。
  • Android平台:so大小500KB左右,OpenCL库300KB左右,Vulkan库300KB左右。

通用性

  • 支持TensorflowCaffeONNX等主流模型文件格式,支持CNNRNNGAN等常用网络。
  • 支持 149TensorflowOp、47CaffeOp、74ONNX Op;各计算设备支持的MNN Op数:CPU 110个,Metal 55个,OpenCL 29个,Vulkan 31个。
  • 支持iOS 8.0+、Android 4.3+和具有POSIX接口的嵌入式设备。
  • 支持异构设备混合计算,目前支持CPU和GPU,可以动态导入GPU Op插件,替代CPU Op的实现。

高性能

  • 不依赖任何第三方计算库,依靠大量手写汇编实现核心运算,充分发挥ARM CPU的算力。
  • iOS设备上可以开启GPU加速(Metal),常用模型上快于苹果原生的CoreML。
  • Android上提供了OpenCLVulkanOpenGL三套方案,尽可能多地满足设备需求,针对主流GPU(AdrenoMali)做了深度调优。
  • 卷积、转置卷积算法高效稳定,对于任意形状的卷积均能高效运行,广泛运用了 Winograd 卷积算法,对3x3 -> 7x7之类的对称卷积有高效的实现。
  • 针对ARM v8.2的新架构额外作了优化,新设备可利用半精度计算的特性进一步提速。

易用性

  • 有高效的图像处理模块,覆盖常见的形变、转换等需求,一般情况下,无需额外引入libyuv或opencv库处理图像。
  • 支持回调机制,可以在网络运行中插入回调,提取数据或者控制运行走向。
  • 支持只运行网络中的一部分,或者指定CPU和GPU间并行运行。

架构设计

MNN可以分为Converter和Interpreter两部分。

Converter由Frontends和Graph Optimize构成。前者负责支持不同的训练框架,MNN当前支持Tensorflow(Lite)、Caffe和ONNX(PyTorch/MXNet的模型可先转为ONNX模型再转到MNN);后者通过算子融合、算子替代、布局调整等方式优化图。

Interpreter由Engine和Backends构成。前者负责模型的加载、计算图的调度;后者包含各计算设备下的内存分配、Op实现。在Engine和Backends中,MNN应用了多种优化方案,包括在卷积和反卷积中应用Winograd算法、在矩阵乘法中应用Strassen算法、低精度计算、Neon优化、手写汇编、多线程优化、内存复用、异构计算等。

MNN使用工作流:

在端侧应用MNN,大致可以分为三个阶段,分别是训练,模型转换和推理。虽然MNN也提供了训练模型的能力,但主要用于端侧训练或模型调优。在数据量较大时,依然建议使用成熟的训练框架,如TensorFlow、PyTorch等。除了自行训练外,也可以直接利用开源的预训练模型。

这里记录如何在UBUNTU18.04上将其跑起来

获取代码:

为了避免节外生枝,我们选择一个距离最新版最近的TAG,可以看到最新版距离最近的TAG 1.2.6有两个提交,我们就用1.2.6.

配置

进入MNN 顶层目录,执行:

cd schema && ./generate.sh

编译

进入顶层目录:

mkdir build && cd build
cmake -DMNN_BUILD_DEMO=ON ..
make -j8

执行编译:

模型转换

使用一个姿态转换模型 https://github.com/czy2014hust/posenet-python/raw/master/models/model-mobilenet_v1_075.pb

编译模型转换工具:

cd MNN/
./schema/generate.sh
mkdir build
cd build
cmake .. -DMNN_BUILD_CONVERTER=true && make -j4

这里生成了模型转换工具,其实这一步可以和上面合起来一起做,第一次操作不太懂,走一些弯路反而会增进了解。编译后的目录除了生成可执行程序之外,还生成了一些动态库,可能是为了方便二次开发。

模型转换,模型转换用例在:MNN/demo/exec/multiPose.cpp文件

在模型目录下输入如下命令

../MNN/build/-f TF --modelFile model-mobilenet_v1_075.pb --MNNModel model-mobilenet.mnn --bizCode biz

转换结果如上图,接下来进行验证:

在build目录下,输入命令:

./multiPose.out ../../model-czl/model-mobilenet.mnn /home/caozilong/Workspace/pt/beauty.jpeg pos.png

运行得到的结果图像pose.png我们打开它,可以看到关键点都被正确标注出来。

语义分割模型:

测试代码是从这里./MNN/demo/exec/segment.cpp, 下载原始模型文件,之后转换:
https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_gpu.tflitehttps://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_gpu.tflite

执行命令:

./segment.out ../../model-czl/deeplabv3_257_mv_gpu.mnn ~/桌面/7fc3d27dgw1f11mocjyuuj21xp2xs4qr.jpg res.png

图像识别模型:

下载模型:

git clone https://github.com/shicai/MobileNet-Caffe

转换模型:

使用模型,原图:

检测结果

mobilenet是个分类网络,最后一层是softmax层,分别计算出十种分类的概率,下图可以看出,右边的列表示的小数是属于左边目标类别的概率。

总结

MNN全套工具环境使用的是Native ELF的开发方式,每个工具都是ELF文件,这一点和NCNN是共同的。本人一直使用底层语言开发,不太喜欢(擅长)脚本语言编程,这么说应该会暴露年龄了吧。:)

参考文档:

示例工程 · 语雀


结束!

这篇关于MNN开发环境搬砖记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416975

相关文章

在Spring Boot中浅尝内存泄漏的实战记录

《在SpringBoot中浅尝内存泄漏的实战记录》本文给大家分享在SpringBoot中浅尝内存泄漏的实战记录,结合实例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录使用静态集合持有对象引用,阻止GC回收关键点:可执行代码:验证:1,运行程序(启动时添加JVM参数限制堆大小):2,访问 htt

Python如何自动生成环境依赖包requirements

《Python如何自动生成环境依赖包requirements》:本文主要介绍Python如何自动生成环境依赖包requirements问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑... 目录生成当前 python 环境 安装的所有依赖包1、命令2、常见问题只生成当前 项目 的所有依赖包1、

使用Python开发一个带EPUB转换功能的Markdown编辑器

《使用Python开发一个带EPUB转换功能的Markdown编辑器》Markdown因其简单易用和强大的格式支持,成为了写作者、开发者及内容创作者的首选格式,本文将通过Python开发一个Markd... 目录应用概览代码结构与核心组件1. 初始化与布局 (__init__)2. 工具栏 (setup_t

MySQL 中查询 VARCHAR 类型 JSON 数据的问题记录

《MySQL中查询VARCHAR类型JSON数据的问题记录》在数据库设计中,有时我们会将JSON数据存储在VARCHAR或TEXT类型字段中,本文将详细介绍如何在MySQL中有效查询存储为V... 目录一、问题背景二、mysql jsON 函数2.1 常用 JSON 函数三、查询示例3.1 基本查询3.2

Spring Shell 命令行实现交互式Shell应用开发

《SpringShell命令行实现交互式Shell应用开发》本文主要介绍了SpringShell命令行实现交互式Shell应用开发,能够帮助开发者快速构建功能丰富的命令行应用程序,具有一定的参考价... 目录引言一、Spring Shell概述二、创建命令类三、命令参数处理四、命令分组与帮助系统五、自定义S

Redis在windows环境下如何启动

《Redis在windows环境下如何启动》:本文主要介绍Redis在windows环境下如何启动的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Redis在Windows环境下启动1.在redis的安装目录下2.输入·redis-server.exe

Pytest多环境切换的常见方法介绍

《Pytest多环境切换的常见方法介绍》Pytest作为自动化测试的主力框架,如何实现本地、测试、预发、生产环境的灵活切换,本文总结了通过pytest框架实现自由环境切换的几种方法,大家可以根据需要进... 目录1.pytest-base-url2.hooks函数3.yml和fixture结论你是否也遇到过

浅谈配置MMCV环境,解决报错,版本不匹配问题

《浅谈配置MMCV环境,解决报错,版本不匹配问题》:本文主要介绍浅谈配置MMCV环境,解决报错,版本不匹配问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录配置MMCV环境,解决报错,版本不匹配错误示例正确示例总结配置MMCV环境,解决报错,版本不匹配在col

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.

Spring Security基于数据库的ABAC属性权限模型实战开发教程

《SpringSecurity基于数据库的ABAC属性权限模型实战开发教程》:本文主要介绍SpringSecurity基于数据库的ABAC属性权限模型实战开发教程,本文给大家介绍的非常详细,对大... 目录1. 前言2. 权限决策依据RBACABAC综合对比3. 数据库表结构说明4. 实战开始5. MyBA