MNN开发环境搬砖记录

2023-11-23 09:30
文章标签 开发 记录 环境 mnn

本文主要是介绍MNN开发环境搬砖记录,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MNN是一个轻量级的深度神经网络推理引擎,在端侧加载深度神经网络模型进行推理预测。目前,MNN已经在阿里巴巴的手机淘宝、手机天猫、钉钉,优酷等20多个App中使用,覆盖直播、短视频、搜索推荐、商品图像搜索、互动营销、权益发放、安全风控等场景。此外,IoT等场景下也有若干应用。

特点

轻量性

  • 针对端侧设备特点深度定制和裁剪,无任何依赖,可以方便地部署到移动设备和各种嵌入式设备中。
  • iOS平台:armv7+arm64静态库大小5MB左右,链接生成可执行文件增加大小620KB左右,metallib文件600KB左右。
  • Android平台:so大小500KB左右,OpenCL库300KB左右,Vulkan库300KB左右。

通用性

  • 支持TensorflowCaffeONNX等主流模型文件格式,支持CNNRNNGAN等常用网络。
  • 支持 149TensorflowOp、47CaffeOp、74ONNX Op;各计算设备支持的MNN Op数:CPU 110个,Metal 55个,OpenCL 29个,Vulkan 31个。
  • 支持iOS 8.0+、Android 4.3+和具有POSIX接口的嵌入式设备。
  • 支持异构设备混合计算,目前支持CPU和GPU,可以动态导入GPU Op插件,替代CPU Op的实现。

高性能

  • 不依赖任何第三方计算库,依靠大量手写汇编实现核心运算,充分发挥ARM CPU的算力。
  • iOS设备上可以开启GPU加速(Metal),常用模型上快于苹果原生的CoreML。
  • Android上提供了OpenCLVulkanOpenGL三套方案,尽可能多地满足设备需求,针对主流GPU(AdrenoMali)做了深度调优。
  • 卷积、转置卷积算法高效稳定,对于任意形状的卷积均能高效运行,广泛运用了 Winograd 卷积算法,对3x3 -> 7x7之类的对称卷积有高效的实现。
  • 针对ARM v8.2的新架构额外作了优化,新设备可利用半精度计算的特性进一步提速。

易用性

  • 有高效的图像处理模块,覆盖常见的形变、转换等需求,一般情况下,无需额外引入libyuv或opencv库处理图像。
  • 支持回调机制,可以在网络运行中插入回调,提取数据或者控制运行走向。
  • 支持只运行网络中的一部分,或者指定CPU和GPU间并行运行。

架构设计

MNN可以分为Converter和Interpreter两部分。

Converter由Frontends和Graph Optimize构成。前者负责支持不同的训练框架,MNN当前支持Tensorflow(Lite)、Caffe和ONNX(PyTorch/MXNet的模型可先转为ONNX模型再转到MNN);后者通过算子融合、算子替代、布局调整等方式优化图。

Interpreter由Engine和Backends构成。前者负责模型的加载、计算图的调度;后者包含各计算设备下的内存分配、Op实现。在Engine和Backends中,MNN应用了多种优化方案,包括在卷积和反卷积中应用Winograd算法、在矩阵乘法中应用Strassen算法、低精度计算、Neon优化、手写汇编、多线程优化、内存复用、异构计算等。

MNN使用工作流:

在端侧应用MNN,大致可以分为三个阶段,分别是训练,模型转换和推理。虽然MNN也提供了训练模型的能力,但主要用于端侧训练或模型调优。在数据量较大时,依然建议使用成熟的训练框架,如TensorFlow、PyTorch等。除了自行训练外,也可以直接利用开源的预训练模型。

这里记录如何在UBUNTU18.04上将其跑起来

获取代码:

为了避免节外生枝,我们选择一个距离最新版最近的TAG,可以看到最新版距离最近的TAG 1.2.6有两个提交,我们就用1.2.6.

配置

进入MNN 顶层目录,执行:

cd schema && ./generate.sh

编译

进入顶层目录:

mkdir build && cd build
cmake -DMNN_BUILD_DEMO=ON ..
make -j8

执行编译:

模型转换

使用一个姿态转换模型 https://github.com/czy2014hust/posenet-python/raw/master/models/model-mobilenet_v1_075.pb

编译模型转换工具:

cd MNN/
./schema/generate.sh
mkdir build
cd build
cmake .. -DMNN_BUILD_CONVERTER=true && make -j4

这里生成了模型转换工具,其实这一步可以和上面合起来一起做,第一次操作不太懂,走一些弯路反而会增进了解。编译后的目录除了生成可执行程序之外,还生成了一些动态库,可能是为了方便二次开发。

模型转换,模型转换用例在:MNN/demo/exec/multiPose.cpp文件

在模型目录下输入如下命令

../MNN/build/-f TF --modelFile model-mobilenet_v1_075.pb --MNNModel model-mobilenet.mnn --bizCode biz

转换结果如上图,接下来进行验证:

在build目录下,输入命令:

./multiPose.out ../../model-czl/model-mobilenet.mnn /home/caozilong/Workspace/pt/beauty.jpeg pos.png

运行得到的结果图像pose.png我们打开它,可以看到关键点都被正确标注出来。

语义分割模型:

测试代码是从这里./MNN/demo/exec/segment.cpp, 下载原始模型文件,之后转换:
https://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_gpu.tflitehttps://storage.googleapis.com/download.tensorflow.org/models/tflite/gpu/deeplabv3_257_mv_gpu.tflite

执行命令:

./segment.out ../../model-czl/deeplabv3_257_mv_gpu.mnn ~/桌面/7fc3d27dgw1f11mocjyuuj21xp2xs4qr.jpg res.png

图像识别模型:

下载模型:

git clone https://github.com/shicai/MobileNet-Caffe

转换模型:

使用模型,原图:

检测结果

mobilenet是个分类网络,最后一层是softmax层,分别计算出十种分类的概率,下图可以看出,右边的列表示的小数是属于左边目标类别的概率。

总结

MNN全套工具环境使用的是Native ELF的开发方式,每个工具都是ELF文件,这一点和NCNN是共同的。本人一直使用底层语言开发,不太喜欢(擅长)脚本语言编程,这么说应该会暴露年龄了吧。:)

参考文档:

示例工程 · 语雀


结束!

这篇关于MNN开发环境搬砖记录的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/416975

相关文章

Python中4大日志记录库比较的终极PK

《Python中4大日志记录库比较的终极PK》日志记录框架是一种工具,可帮助您标准化应用程序中的日志记录过程,:本文主要介绍Python中4大日志记录库比较的相关资料,文中通过代码介绍的非常详细,... 目录一、logging库1、优点2、缺点二、LogAid库三、Loguru库四、Structlogphp

python项目环境切换的几种实现方式

《python项目环境切换的几种实现方式》本文主要介绍了python项目环境切换的几种实现方式,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 如何在不同python项目中,安装不同的依赖2. 如何切换到不同项目的工作空间3.创建项目

Python+wxPython开发一个文件属性比对工具

《Python+wxPython开发一个文件属性比对工具》在日常的文件管理工作中,我们经常会遇到同一个文件存在多个版本,或者需要验证备份文件与源文件是否一致,下面我们就来看看如何使用wxPython模... 目录引言项目背景与需求应用场景核心需求运行结果技术选型程序设计界面布局核心功能模块关键代码解析文件大

C++多线程开发环境配置方法

《C++多线程开发环境配置方法》文章详细介绍了如何在Windows上安装MinGW-w64和VSCode,并配置环境变量和编译任务,使用VSCode创建一个C++多线程测试项目,并通过配置tasks.... 目录下载安装 MinGW-w64下载安装VS code创建测试项目配置编译任务创建 tasks.js

一篇文章彻底搞懂macOS如何决定java环境

《一篇文章彻底搞懂macOS如何决定java环境》MacOS作为一个功能强大的操作系统,为开发者提供了丰富的开发工具和框架,下面:本文主要介绍macOS如何决定java环境的相关资料,文中通过代码... 目录方法一:使用 which命令方法二:使用 Java_home工具(Apple 官方推荐)那问题来了,

Nginx搭建前端本地预览环境的完整步骤教学

《Nginx搭建前端本地预览环境的完整步骤教学》这篇文章主要为大家详细介绍了Nginx搭建前端本地预览环境的完整步骤教学,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录项目目录结构核心配置文件:nginx.conf脚本化操作:nginx.shnpm 脚本集成总结:对前端的意义很多

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二

docker编写java的jar完整步骤记录

《docker编写java的jar完整步骤记录》在平常的开发工作中,我们经常需要部署项目,开发测试完成后,最关键的一步就是部署,:本文主要介绍docker编写java的jar的相关资料,文中通过代... 目录all-docker/生成Docker打包部署文件配置服务A的Dockerfile (a/Docke